سلم التنقيط

وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

امتحان: بكالوريا التعليم الثانوي دورة: جوان 2014

الشعبة: تقتي رياضي / هندسة ميكانيكية المادة: تكنولوجيا

الموضوع الأول: نظام آلي للتقعير

20/13	دراسة الإنشاء
20/07	دراسة التحضير
20/20	المجموع

07	,	دراسة التحضير	13	9	دارسة الإنشاء
04	ل الصنع	أـ تكنولوجيا لوسائل و طرة	07	ي	أ- التحليل الوظيف
	0.625	5 ×0.125 - 1		0.25	-1
	0.5	2 ×0.25 - 2		0.75	5×0.1 + 0.25 - 2
	0.25	2 ×0.125 - 3	:	0.5	4 ×0.125 - 3
	0.75	3 ×0.25 - 4		0.5	4 ×0.125 - 4
	1.5	0.5+ 0.25 + 0.75 - 5		0.5	0.25 + 0.25 -1-5
	0.375	0.25 + 0.125 - 6		0.375	3 × 0.125 -2- 5
03		ب - الآليات		1.75 2×7 ×0.125	
	2	- ¹		0.25	2 ×0.125 -2- 6
	1	0.5 + 0.5 - 2		0.25	2 × 0.125 -3- 6
				0.25	2 ×0.125 - 7
				0.625	2 ×0.25 + 0.125 -1-8
				1	4 ×0.25 -2- 8
			06	ۣي	ب ـ التحليل البنيو
			03.5	ä ین	دراسة تصميمية جز
				2	تركيب المدحرجات
				1	الوصلة الاندماجية
				0.5	الكتامة
			02.5	دراسة تعريفية جزئية	
				2	تمثيل المساقط
				0.5	السماحات و الخشونة

ب ـ ملف الأجوبة

5-1- دراسة الإنشاء

أ- تحليل وظيفي

4- أتمم الرسم التخطيطي الحركي

1- أكمل مخطط الوظيفة الإجمالية للنظام الآلي
 (علبة A-0)

2- أكمل المخطط التجميعي لجهاز التقعير بوضع مختلف الوظائف ثم صياغتها داخل الجدول:

صياغة الوظيفة	رمز الوظيفة
تقعير الصفائح	FP ₁
تحويل حركة دورانية إلى انتقالية	FP ₂
ربط المحرك بالجهاز	FC ₁
تركيب المخرز على الجهاز	FC ₂
مقاومة المحيط الخارجي	FC ₃

3- أتمم جدول الوصلات الحركية التالي:

الوسيلة	الرمز	اسم الوصلة	القطع
وسادة	#	متمحورة	(8)/(7)
تسطيح+9+91+20+21		اندماجية	(8)/(16)
مرزة		اندماجية	(5)/(2)
توجيه بمجرى غنفري	+	انز لاقية	(15)/(13)

5- التحديد الوظيفي للأبعاد : 5- 1- أن نا اتالأ إداانا تا الشاعات الما

1-5 أنجز سلسلة الأبعاد الخاصة بالشرط " Ja"على الرسم التالي ثم أكتب المعادلات الخاصة بهذا الشرط:

Ja_{maxi}=a_{14maxi}-(a_{17mini}+a_{18mini}) Ja_{mini}=a_{14mini}-(a_{17maxi}+a_{18maxi})

مجل على الجدول التالي التوافقات المناسبة لـ \mathbb{Q}_1 ، \mathbb{Q}_2 و \mathbb{Q}_3 الموجودة على الرسم التجميعي صفحة 20/3

النوع	تعيين التوافق	الأقطار
بخلوص	Ø - H7f7	Ø ₁
بالشد	Ø - H7m6	Q_2
بخلوص	Ø - H7g6	Q_3

6- دراسة المتسننات الأسطوانية ذات أسنان قائمة [(5)،(6)]:

روب) روب). 6-1- أتمم جدول المميزات التالي مع كتابة المعادلات والحسابات:

$$a = \frac{d_5 + d_6}{2} \Rightarrow d_5 = 2a - d_6$$

$$d_5 = 240 - 40 = 200 mm$$

$$z_6 = \frac{d_6}{m} = \frac{40}{2} = 20$$
 dents
 $z_5 = \frac{d_5}{m} = \frac{200}{2} = 100$ dents

$$da_5 = d_5 + 2 \times m = 200 + 4 = 204mm$$

$$da_6 = d_6 + 2 \times m = 40 + 4 = 44mm$$

$$df_5 = d_5 - 2.5 \times m = 200 - 5 = 195mm$$

$$df_6 = d_6 - 2.5 \times m = 40 - 5 = 35mm$$

а	df	da	Z	d	m	
120	35	44	20	40	0	(6)
	195	204	100	200		(5)

6-2 أحسب نسبة النقل ₆₋₅:

$$r_{6-5} = \frac{d_6}{d_5} = \frac{40}{200} = \frac{1}{5}$$

6-3 أحسب سرعة دوران العمود (2):

$$N_6 = N_m = 750 \text{tr/mn}$$

 $N_2 = N_5 = N_6 \times r_{6-5} = 750 \times \frac{1}{5} = 150 \text{tr/mn}$

7- أحسب مشوار المخرز C:

$$C = 2 \times r = 2 \times 52 = 104 \text{mm}$$

8- دراسة ميكانيكية للمقاومة:
8-1 تنقل الحركة إلى الزالق (13) بواسطة الساعد (7). عند لحظة التقعير، يقوم المخرز بالضغط على الصفيحة بقوة قدرها F=1350N نفرض أن مقطع الساعد (7) عبارة عن مستطيل (أنظر الشكل الموالي)

أ- ما هو نوع التأثير الذي يخضع له الساعد (7)؟
الإنضغاط البسيط
ب- أحسب الإجهاد الناظمي σ (R) الذي يؤثر على
الساعد (7).

$$\sigma = \frac{F}{S} = \frac{1350}{18 \times 5} = 15 \text{N/mm}^2$$

2-8 أثناء نقل الحركة الدورانية ، تخضع المرزة (29) لتأثير القص البسيط إذا علمنا أن المزدوجة المنقولة تقدر بـ C=55Nm المقاومة التطبيقية للانزلاق Rpg = 90 N/mm² و قطر العمود (2) d₂ = 22mm أحسب القطر الأدنى للمرزة (29) الذي يتحمل هذا التأثير d_{mini}

$$C = F \times \frac{d_2}{2} \Rightarrow F = \frac{2c}{d_2} = \frac{2.55.10^3}{22} = 5000N$$

$$\frac{F}{2S_{_{29}}} \le R_{_{pg}} \Rightarrow S_{_{29}} \ge \frac{F}{2Rpg} = 27,77mm^2$$

$$S_{29} = \frac{\pi d_{29}^2}{4} \Rightarrow d_{29mini} = \sqrt{\frac{4S}{\pi}} = 5,94mm$$

5-1- دراسة الإنشاء:

ب- تحلیل بنیوی:

* دراسة تصميمية جزئية:

لتحسين مردود جهاز التقعير (صفحة 20/3) و جعله أحسن وظيفيا ، نطلب:

- تغيير الوسادات (11) المستعملة في الوصلة المتمحورة بين العمود (2) و الهيكل (1) بمدحرجات ذات صف واحد من الكريات بتلامس نصف قطري.
 - تغيير الوصلة الإندماجية القابلة للفك بين العجلة (5) و العمود (2) بحل آخر مستعينا بملف الموارد.

- ضمان الكتامة بواسطة الغطاء (32) و فاصل ذو شفتين من الجهة اليمني.

* دراسة تعريفية جزئية:

مستعينا بالرسم التجميعي (صفحة 20/3)، أكمل الرسم التعريفي للزالق(13) بمقياس 2:1 حسب: -المسقط الأمامي بقطاع

- المسقط العلوي
- وضع السماحات الهندسية(بدون قيم) و رموز الخشونة (بدون قيم).

- B

5-2- دراسة التحضير

أ- تكنولوجيا لوسائل و طرق الصنع:

نريد دراسة وسائل وطرق صنع المحور (8) المنجز من مادة 30NiCr6 كما يبينه الرسم التعريفي الموالي مع العلم أن السطوح المرقمة هي السطوح المشغلة و أن سلسلة التصنيع صغيرة يقدر السمك الإضافي بـ 1mm.

1 - إشرح تعيين مادة صنع المحور (8) 30NiCr6 كروم صلب ضعيف المزج -30: 0.3% من الكربون - Ni : نيكل - Cr : كروم - Ni : نيكل - - 6 : 1.5% من نيكل.

2 ـ أعط أبعاد الخام للمحور (8) L= 105 mm Ø = 40 mm

3 - استعمل العلامة (x) في الخانة المناسبة لاختيار وحدات التشغيل المناسبة لصنع المحور (8)

4 - أكمل جدول سير الصنع الموالى للمحور (8)

منصب العمل	•	المرحلة
منصب المراقبة	مراقبة الخام	100
منصب الخراطة	12-11-10-5-4-3-2-1	200
منصب الخراطة	14-13-7-6	300
منصب التفريز	18 -17-16 -15- 9 -8	400
منصب المراقبة	مراقبة نهائية	500

5 ـ ضع المحور (8) في وضعية سكونية (إيزوستاتية) لإنجاز السطوح (1) و (2) مع تمثيل أدوات القطع المناسبة في وضعية التشغيل مع تسجيل أبعاد الصنع بدون قيم (شكل1)

6 ـ ما هي أجهزة القياس المناسبة لمراقبة أبعاد الصنع الخاصة بانجاز السطوح (1) و (2):

- البعد (1): قدم القياس

- البعد (2) : ميكرومتر — CMD

ب ـ آلبات:

بعد الإعلان عن وجود الصفيحة بواسطة الكاشف (p) و بالضغط على الزر (dcy) تنطلق الدورة حيث تدفع الصفيحة المعدنية إلى وضعية العمل بواسطة الدافعة (V_1) وعند تلامس ساق الدافعة (V_1) بالملتقط (a_0) وفي هذه اللحظة ينطلق المحرك (Mt) في الدوران و ينقل الحركة إلى المخرز الذي ينزل للقيام بعملية التقعير .

تلامس المخرز بالملتقط (c) في نهاية صعوده يسبب توقف المحرك و خروج ساق الدافعة (V_2) لإخلاء الصفيحة المقعرة نحو صندوق التخزين.

عند تلامس ساق الدافعة (V_2) بالملتقط (b_1) ترجع الساق لتلامس الملتقط (b_0) وتنتهي الدورة .

1 ـ أتمم المخطط (م ت م ن) مستوى 2 الخاص
 بالنظام .

2 - أربط الدافعة V_1 بموزع 5/2 في الحالتين.

الحالة الثانية

سلم التنقيط

وزارة التربية الوطنية الديوان الوطني للامتحانات و المسابقات

دورة: جوان 2014

المادة: تكنولوجيا

امتحان: بكالوريا التعليم الثانوي أ الشعبة: تقني رياضي / هندسة ميكانيكية

الموضوع الثاني: نظام آلي للتلولب الداخلي

20/13	دراسة الإنشاء
20/07	دراسة التحضير
20/20	المجموع

07	J	دراسة التحضير	13	5	دارسة الإنشاء	
04	ق الصنع	أ ـ تكنولوجيا لوسائل و طرز	07	ي	ا- التحليل الوظيفي	
	0.625	5 ×0.125 - 1		0.25	- 1	
	0.625	5 ×0.125 - 2		0.75	6×0.125 - 2	
	0.5	4 ×0.125 - 3		0.5	4 ×0.125 - 3	
	1.5	0.5+0.25+0.75 - 4		0.625	5 × 0.125 - 4	
	0.5	4 ×0.125 - 5		0.5	0.25 + 0.25 -1-5	
	0.25	2 ×0.125 -6		0.375	3 ×0.125 -2- 5	
03		ب ـ الآليات		1.75 2×7×0.125 -		
	2	-1		0.25	2 ×0.125 -2- 6	
	0.25	-2		0.25	2 ×0.125 -3- 6	
	0.75	- 3		0.25	2 ×0.125 -4-6	
				1.5	2 ×0.25 + 2 ×0.5 - 7	
			06	ِي	ب ـ التحليل البنيو	
			03.5	غيث	در اسة تصميمية جزا	
				2.5	تركيب المدحرجات +توافقات	
				0.5	الوصلة الاندماجية	
				0.5	الكتامة	
			02.5	دراسة تعريفية جزئية		
				2	تمثيل المساقط	
				0.5	السماحات و الخشونة	

ب ـ ملف الأجوبة 5-1- دراسة الانشاء

أ- تحليل وظيفي

1- أكمل مخطط الوظيفة الإجمالية للنظام الآلي(علبة A-0)

2- أكمل مخطط الوظائف التقنية لجهاز التلولب الداخلي

3- أتمم جدول الوصلات الحركية التالي:

الوسيلة	الرمز	اسم الوصلة	القطع
خابور +حلقة مرنة+لجاف		اندماجية	(5)/(3)
وسادات ذات مسند		متمحورة	(11)/(9)
سطوح شبه منحرفة الشكل	-	انز لاقية	(8)/(7)
لولبة (برغي - صامولة)	4	لولبية	(7)/(9)

4- أتمم الرسم التخطيطي الحركي

5- التحديد الوظيفي للأبعاد:

1-5 أنجز سلسلة الأبعاد الخاصة بالشرط " Ja "على الرسم التالى ثم أكتب المعادلات الخاصة بهذا الشرط:

 $Ja_{maxi} = a_{11maxi} - (a_{10mini} + a_{10'mini})$ $Ja_{mini} = a_{11mini} - (a_{10maxi} + a_{10'maxi})$

زائق و مزنقة حـ علما أن التوافق الموجود بين (11) و (8)هو: شكل غنفري 78H7g6 حيث:

$$78g6 = 78^{-10} 78H7 = 78^{+30}$$

-أحسب الخلوص الأقصى و الخلوص الأدنى ثم استنتج نوع التوافق.

 J_{max} = AI_{max} - Ar_{min} =78.030-77.971=0.059mm J_{min} = AI_{min} - Ar_{max} =78-77.990=0.010mm نستخلص أن التوافق بخلوص

6- در اسة المتسننات الأسطوانية ذات أسنان قائمة {(3)،(4)}:

{(3)،(4)}: 6-1- أتمم جدول المميزات التالي مع الحسابات:

$$a = \frac{d_4 - d_3}{2} \Rightarrow d_4 = 2a + d_3 = 354mm$$

$$z_3 = \frac{d_3}{m} = \frac{114}{3} = 38$$

$$z_4 = \frac{d_4}{m} = \frac{354}{3} = 118$$

$$da_3 = d_3 + 2 \times m = 114 + 6 = 120 \text{mm}$$

$$da_4 = d_4 - 2 \times m = 354 - 6 = 348 \text{mm}$$

 $df_3 = d_3 - 2.5 \times m = 114 - 7.5 = 106.5 \text{mm}$
 $df_4 = d_4 + 2.5 \times m = 354 + 7.5 = 361.5 \text{mm}$

а	df	da	Z	d	m	
120	106.5	5 120 38 114		114	J	(3)
	361.5	348	118	354	3	(4)

6-2 أحسب سرعة العمود (2):

$$r = \frac{N_2}{N_5} = 0.32 \Rightarrow$$

$$N_2 = N_5 \times r = 750 \times 0.32 = 240 \text{tr/mn}$$

$$C = \frac{P}{\omega} = \frac{30 \times P}{\pi \times N}$$

$$C = \frac{30 \times 1.5 \times 10^{3}}{3.14 \times 750} = 19.10 \text{ N m}$$

6-4 أحسب الجهد المماسي T المؤثر على مستوى الترس(3):

C = T ×
$$\frac{d_3}{2}$$
 \Rightarrow T = $\frac{2 \times C}{d_3}$
T = $\frac{2 \times 19.10 \times 10^3}{114}$ = 335.08N

124	4 ** *			1.3	* 1		_
40	لمقاو	14	1511	510	dul	17 -	1
	,	5 1000			-		

نفرض أن العمود (2) عبارة عن عارضة أفقية تحت نفرض أن العمود (2) عبارة عن عارضة أفقية تحت تأثير الانحناء المستوي البسيط وخاضع للجهود التالية: $|\vec{F}_A| = 840N$ $= \|\vec{F}_B\| = 840N$ = 840N =

$$T = +F_A = +840N$$
 AC

$$T=+F_A-F_C=+840-1680=-840N$$
 CB

حساب عزوم الإنحناء الطريقة 1

$$0 \le x \le 50$$
 AC المنطقة $Mf = -F_A \cdot x$ $\begin{cases} x = 0 \Rightarrow Mf = 0 \\ x = 50 \Rightarrow Mf = -42000Nmm \end{cases}$ CB المنطقة $Mf = -F_A \cdot x + F_c (x - 50)$ $\begin{cases} x = 50 \Rightarrow Mf = -42000Nmm \\ x = 100 \Rightarrow Mf = 0 \end{cases}$

$$0 \le x_1 \le 50$$
 AC المنطقة Mf $_1 = -F_A.x_1$ $x_1 = 0 \Rightarrow Mf_1 = 0$ $x_1 = 50 \Rightarrow Mf_1 = -42000Nmm$

$$0 \le x_2 \le 50$$
 $M_2 = -F_A(50 + x_2) + F_C \cdot x_2 \begin{cases} x_2 = 0 \Longrightarrow M_2 = -42000 \text{Nmm} \\ x_2 = 50 \Longrightarrow M_2 = 0 \end{cases}$ CB

ب- تحلیل بنیوی:

- * دراسة تصميمية جزئية: لتحسين المجموعة الجزئية على مستوى عمود الخروج (2) لجهاز التلولب الداخلي و نظرا لوجود جهود محورية ناتجة عن عملية القطع نطلب:
- ـ تعويض المدحر جات (18)بمدحر جات ذات دحاريج مخروطية لضمان الوصلة المتمحورة بين (2) و {(1)/(6)} - وضع التوافقات المناسبة لتركيب هذه المدحرجات.
 - أنجز الوصلة الإندماجية بين العجلة (4) و العمود (2).
 - ضمان كتامة الجهاز.

* دراسة تعريفية جزئية:

مستعينا بالرسم التجميعي (صفحة 20/13)، أكمل الرسم التعريفي للغطاء (16) بمقياس 2:1 حسب:

-المسقط الأمامي بقطاًع - نصف مسقط أيسر

-وضع: *الأبعاد الوظيفية الخاصة بالأقطار .

2-5- دراسة التحضير:

أ- تكنولوجيا لوسائل و طرق الصنع:

نريد دراسة وسائل و طرق صنع الترس(3) المنجز من مادة 25CrMo4 كما يبينه الرسم التعريفي الموالي مع العلم أن السطوح المرقمة هي السطوح المشغلة و أن سلسلة التصنيع صغيرة السمك الإضافي للتشغيل يقدرب :mm1.5

m=3 z=38 Ra=3.2 سماح عام=0.1±

1- إشرح تعيين مادة صنع الترس (3):25CrMo4
 صلب ضعيف المزج –25: 0.25%من الكربون
 Cr : كروم- Mo : موليبدان- 4 : 1% من الكروم

2- أرسم الشكل الأولي لخام الترس(3) مع تحديد أبعاده:

4- ضع الترس(3)في وضعية سكونية (ايز وستاتية) لإنجاز السطوح (1)و (3) مع تمثيل أدوات القطع المناسبة في

3- أتمم جدول سير الصنع التالي:

-	taran and an	- 10
المنصب	العمليات	المرحلة
مركز المراقبة	مراقبة الخام	100
خراطة	2	200
خراطة	3 - 1	300
تفريز	7 -6 - 5	400
تفريز	4	500
مركز المراقبة	مراقبة نهائية	600

5- أحسب سرعة الدوران(N)للترس و سرعة التغذية(Vf) عند إنجاز السطح (1) علما أنVc=80m/mn و التقدم في الدورة

ب - آليات:

بعد الإعلان عن وجود القطعة بواسطة الكاشف (p) الموجود تحتها و بالضغط على الزر (dcy) ، تدفع القطعة نحو وضعية العمل بخروج ساق الدافعة (V1)

- عند تلامس الساق بالملتقط (a₁) تخرج ساق الدافعة (V₂) لتثبيت القطعة .
 - ، تلامس الساق بالملتقط (b_1) يؤدي إلى رجوع ساق الدافعة (V_1) .
- عند تلامس الساق بالملتقُطُ (ao) يُنطلق المحركان (Mt1) و (Mt2) في الدوران للقيام بعملية التلولب الداخلي القطعة
 - عند تلامس جهاز التلولب الداخلي بالملتقط (c1) يتغير اتجاه دوران المحركين لرجوع الأداة .
 - تلامس الجهاز بالملتقط (c_0) يؤدي إلى رجوع ساق الدافعة (V_2) .
 - عند تلامس الساق بالملتقط (bo) تنتهى الدورة .

1 - أتمم المخطط (م ت م ن) مستوى 2 الخاص 2 - ما هو نوع الدافعة V_2 : بالنظام .

