الموضوع الأول الموضوع الأول (60نقط)

nالتعبيرعن v_{n} بدلالة.

 $v_{n} = 2.3^{n}$ ومنه $v_{n} = v_{0}.q^{n}$:

 \mathbf{n} ب)حساب الفرق $\mathbf{v}_{\mathrm{n+1}} - \mathbf{v}_{\mathrm{n}}$ بدلالة

 $v_{n+1} - v_n = v_n.q - v_n = v_n(q-1)$ = $2.3^n(3-1) = 4.3^n$

 (v_n) استنتاج اتجاه تغير المتتالية

 ${
m v}_{{
m n+1}} - {
m v}_{{
m n}} = 4.3^{{
m n}} > 0$: من لل جو البلس باق المين المنظل من ا

n بدلالة S_n بدلالة -2

 $S_n = v_0 + v_1 + \dots + v_{n-1} = v_0 \left[\frac{q^n - 1}{q - 1} \right]$ $= 2 \left[\frac{(3)^n - 1}{3 - 1} \right] = 3^n - 1$

 $S_n = 80$ بحيث قيمة العدد الطبيعي n بحيث: $S_n = 80$ مرق اه $S_n = 80$ مرق اه

 $S_{n} = -3^{n}$ مرقی اه $S_{n} = -3^{n}$.

مرتی اه $S_{n} = 81$ و دن ه $S_{n} = 81$ لأن $S_{n} = 81$

م عن اه = 81 و من ه = 41 الن = 31 الن = 31 جـ) أثبات بالتراجع أن العدد = 31 القسمة على 2 جـ) التحق من ص ح ة = 31

2 ين ا $= 0 - 3^0$ ققة الأن 0 ين النهر من المحتان الكلام عن الكلام المحتان الكلام الكلام

 $3^{n}-1=2k$: $3^{n+1}-1=2k$: $3^{n+1}-1=2k$: $3^{n+1}-1=2k$: $3^{n+1}-1=2k$: ونيا $3^{n}-1=2k$: $3^{n}-1=2k$: $3^{n}-1=2k$: $3^{n+1}-1=3^{n}.3-1=3^{n}(2+1)-1$: $3^{n}-1=2k+2.3^{n}=2(k+3^{n})=2k$

التمرين الثاني: (06نقط)

1)دراسة توافق العددان 2013 و718 بترديد7

ك فين ا: 4 + 287 × 7 = 2013 و 4 + 102 × 7 = 718 و من ال عددان 2002 و 807 مفواق النتبر دي د 8 لأن ل مماف س بلق لي قاس مة قالأي مية في ع 8 و مو 4

طريقة 2013 – 718 = 1295 = 7 × 185

و من ال عددان 2002 و 807م في اقال و ديد 8 لأن

للطرقهين هما جن اعفل عدد 8.

2-أ) تعييّن باقي قسمة 46 على7

 $.4^6 = 4096 = 1[7]$. وينا:

 $n\in\mathbb{N}$ كل أجل كل $4^{6n}-1\equiv0$ من أجل كل ب

 $4^{6n} \equiv 1[7] \equiv 4^{6}$ وف $4^{6} \equiv 1[7]$

 $4^{6n} - 1 \equiv 0[7]$ أي

3-أ)تعييّن باقي قسمة لـ 2013 و718 على7

من للجواب 0لعيينا:

 $2013 \equiv 4 \lceil 7 \rceil$ عن اه $3 = 7 \times 287 + 4$

718 = 4[7] مي اه $718 = 7 \times 102 + 4$

7بيان أن $3 \times 718^{6n} + 2013$ يقبل القسمة على $3 \times 718^{6n} + 2013 = 0$ $3 \times 718^{6n} + 2013 = 0$ $3 \times 718^{6n} + 2013 = 3 \times 4^{6n} + 4$ $3 \times 718^{6n} + 2013 = 3 \times 4^{6n} + 4$ $9 \times 718^{6n} + 2013 = 3 \times 1 + 4$ $9 \times 718^{6n} + 2013 = 0$ 9×718^{6

 $1434^{2n} \equiv (-1)^{2n} [7] \equiv 1[7]$ وفي ه $1434^{2n} = 0[7] \equiv 1[7]$ وفي ه $1+n \equiv 0[7]$ وفي ه $1+n \equiv 0[7]$ هي $1+n \equiv 0[7]$ هي من ه $1+n \equiv 0[7]$ هي من ه $1+n \equiv 0[7]$ هي د مليعي وفي د مايعي من د مليعي وفي د مايعي من الم

$f(x) = x(x-2)^2$: اثبات ان : -2

 $x^3 - 4x^2 + 4x = x(x^2 - 4x + 4) = x(x - 2)^2$

اللهنين احدثيا هما (0,0) و (2,0)

g(x) = 4x أن تييّان أن 3-4

ل فين ا: g(x) = 4x من اه y = g(x) و هي معللة ال مماس

 (Δ) و (C) باتعیین فواصل نقط تقاطع

 $x((x-2)^2-4)=0$

x((x-2)-2)((x-2)+2)=0

م کل اه x = 0 (x - 4) و فی ه x = 0 أو x = 4 .

$\frac{4}{2}$ ا تبیان ان (C) یقبل نقطة انعطاف فاصلتها (4

رغيين أن المشتق الثراري بين عدم على والمحروش الرات م f''(x) = 6x - 8 ومنه $f'(x) = 3x^2 - 8x + 4$

 $x = \frac{4}{2}$ می اه 6x - 8 = 0 ای f''(x) = 0

 $x < \frac{4}{2}$ أي f''(x) < 0

 $x \succ \frac{4}{2}$ م $6x - 8 \succ 0$ م آي $f''(x) \succ 0$

m تعيين مجموعة قيم

ل معالم على المعالم من اه (C) يقطع المستقيم ذو المعدلة y = m ي وازي حامل محورل فواص ل فعيشلا شرق ط ملحفة $0 \prec m \prec \frac{32}{27}$ من لييانن جد: $0 \prec m \prec f(\frac{2}{2})$ أي

التمرين الثالث (80نقط)

11)تعييّن عدد نقط تقاطع (C) ومحور الفواصل بيانيا

من لليهان (ع)قطع محورل فواص لفي رق ملين

 \mathbb{R} على f(x) على المعبارة العبين إشارة

من لهيان الهين ا:

 $x \in]-\infty;0[$ من أجلك f(x) < 0

 $x \in [0; +\infty]$ من أجلك $f(x) \ge 0$

-1الا-1 – أ)حساب نهاية الدالة \mathbf{f} عند ∞ – و عند

 $f(x) = x^3 - 4x^2 + 4x$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^3) = -\infty$ يمنه:

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x^3) = +\infty$

ب)حساب (x) ودراسة اشارته

 $f'(x) = 3x^2 - 8x + 4$ ومنه $f(x) = x^3 - 4x^2 + 4x$

2/3 × x × 2 م ع اه f'(x) × 0

x < 2/3 و f'(x) > 0 مری اہ f'(x) > 0

ج) تشكيل جدول تغيرات الدالة f

X	-∞ 2/2	2 +∞
f(x)	+ 0 -	0 +
	f(2/3)	+
f(x)		1
	$ \stackrel{-\infty}{\leq} $	f(2)
	$-\infty$	f(2)

f(2) = 0 و f(2/3) = 32/27 و ال حظة:

 $x(x-2)^2 = x(x^2-4x+4) = x^3-4x^2+4x$: 2

ب) تعييّن نقط تقاطع (C) مع محور الفواصل

f(x) = 0 و محول مول مرق اه f(x) = 0

x = 2 أو x = 0 أو x = 0

ومنه (عِ)قطع حامل محورل الملوس في القطين

(C) تى د (C) كالى (C)

y = g(x) = f(0)(x-0) + f(0) = 4(x-0) + 0 = 4x

 Φ و Φ ن (Δ) و (Δ) هي Φ و ل

 $x(x-2)^2 = 4x$ م کی اه f(x) = g(x)

 $x(x-2)^2 - 4x = 0$ م کی اه

الحل النموذجي لاختبار مادة الرياضيات شعبة: أداب وفلسفة + لفات أجنية إعداد الأستاذ: بالعبيدي م العربي

بكالوريا التعليم الثانوي (دورة 2013)

 $7 \equiv 0[7]$ لأن $a^2 + 3b^2 \equiv 0[7]$ ومنه: b = -1[7] التحقق أن: b = -1[7] ومن b = 6 - 7[7] أي b = 6[7]7كا على b^{1434} و b^{2013} على باستنتاج باقى قسمة كلا من $b^{2013} \equiv (-1)^{2013} \begin{bmatrix} 7 \end{bmatrix}$ وف $b \equiv -1 \begin{bmatrix} 7 \end{bmatrix}$ $b^{2013} \equiv 6 [7]$ و هنه : [7] $[7] \equiv (-1)$ ومن b^{2013} هو b^{2013} هو b^{2013} $b^{1434} \equiv (-1)^{1434} \begin{bmatrix} 7 \end{bmatrix}$ وفي $b \equiv -1 \begin{bmatrix} 7 \end{bmatrix}$ $b^{1434} \equiv (1) [7]$ و هنه : n تعيين الأعداد الطبيعية (4 $(a+b)^n + n \equiv 0 \lceil 7 \rceil$ a + b = 1[7] و في a = 2[7] و a = 2[7] $(1)^n + n \equiv 0[7]$ $(a+b)^n + n \equiv 0[7]$ 1+n = 0[7] تاهنی $n \equiv 6[7]$ تالخف ی $k \in \mathbb{N}$ و n = 7k + 6

 (v_n) دراسة اتجاه تغير المتتالية الح $(\mathbf{v}_{\mathbf{n}})$ لامين ا $\mathbf{v}_{\mathbf{n}} = 2\mathbf{u}_{\mathbf{n}} + 1$ دراسة نثار المنظير $\mathbf{v}_{\mathsf{n}+\mathsf{l}} - \mathbf{v}_{\mathsf{n}}$ ندر ساش اراق المارق کاری $v_{n+1} - v_n = 2u_{n+1} + 1 - 2u_n - 1$ $u_{n} - 2u_{n+1} + 1 - 2u_{n} - 1$ = $2(u_{n+1} - u_{n}) = 2r = 10$. \mathbb{N} و ليم المم المعنى ا ب) حساب المجموع 'S $S' = v_0 + v_1 + \dots + v_{2013}$ $v_n = 2u_n + 1$: الم $S' = (2u_0 + 1) + (2u_1 + 1) + \dots + (2u_{2013} + 1)$ ومنه: S' = 2S + 2014 = 20276952التمرين الثاني (06نقط) 1-I) تعيين باقى القسمة الإقليدية للعدد 3a + b على 7 $3a \equiv 6[7]...(1)$ ومنه $a \equiv 2[7]$ ا ول فين ا: (2) = b = 6 [7]....(2) 3a + b = 6 + 6[7] (نجد: (5a + b) = 6 + 6[7] $12 \equiv 5 \lceil 7 \rceil$ ومنه: $3a + b \equiv 5 \lceil 7 \rceil$ لأن 2)تعييّن باقى القسمة الإقليدية للعدد a² + 3b² على 7 $a^2 \equiv 4[7]...(1)$ ومنه $a^2 \equiv 2^2[7]$ أي $a \equiv 2[7]$ $3b^2 = 3[7]...(2)$ و في ه $b = 6[7] \times 3b^2 = 3b^2$ أي b = 6[7] $a^2 + 3b^2 \equiv 4 + 3[7]$ ب (0) (ن جد: (7)

الموضوع الثاني التمرين الأول :(06نقط) u₀ باسم(1 $u_0 + u_1 + u_2 + u_3 = 34....(1)$ و r = 5 $u_3 = u_0 + 3r$ و $u_2 = u_0 + 2r$ و $u_1 = u_0 + r$ $4u_0 + 6r = 34$ رمنه: (1) منه: $u_0 = \frac{34-6r}{4} = \frac{34-30}{4} = 1$ $u_n = 5n + 1$ أن (2 r = 5 و $u_0 = 1$ و $u_n = u_0 + nr$ و $u_n = u_0 + nr$ $u_n = 5n + 1$ [منه] a) تعيين العدد الطبيعي $u_{n+1} + u_n - 8n = 4033$ $u_{n+1} + u_n - 8n = 5(n+1) + 1 + 5n + 1 - 8n = 4033$ n = 2013: 2n + 7 = 4026 إذن 2n + 7 = 4033 \mathbf{S} حساب المجموع $S = u_0 + u_1 + \dots + u_{2013} = \frac{2013 + 1}{2} (u_0 + u_{2013})$ $\mathbf{u}_{2013} = 5(2013) + 1 = 10066$ و $\mathbf{u}_{0} = 1$ $S = \frac{2014}{2}(1+10066) = 10137469$ [2013]

(00)	جدولالغ <i>ير</i> ات		
$+\infty$ $\times \in \mathbb{R} - \{-2\}$ من أجل كل $f(x) = 1 + \frac{3}{2x - 4}$	2 +∞		f'(x)
$f(x) = 1 + \frac{3}{2x - 4} = \frac{2x - 4 + 3}{2x - 4} = \frac{2x - 1}{2x - 4}$	+∞1	1	f(x)
$I(1) =$ مرن ه $A(1;) \in (C)$		3 ني يكون ميل المماس هو - 2	_
$A \in (C)$ وفي $f(1) = \frac{7}{2(1) - 4} = -\frac{7}{2}$	و پال مماسل (ع) ساوي $\frac{3}{2}$ مرتجاه $f'(a) = -\frac{3}{2}$	$\frac{G'(a) = -\frac{3}{2} \log_{2} -\frac{3}{2}}{\frac{-6}{(2-4)^{3}}} = -\frac{3}{6}$	f
3-أ(حساب نهاية الدالة f عند أطراف مجالي 2 كالتعريف		$(2a-4)^2 = (2a-4)^2 $	
$[-\infty;2[\cup]2;+\infty[$ وين $-\infty$ فين $[0,\infty]$ $[0,\infty]$ وين ا $[0,\infty]$ وين ا $[0,\infty]$ وعداث	~	: a أو a = 3 اطع(C)مع محوري الإحداة	ثيات
ن حل المعللة ($x \to +\infty$ $x \to +\infty$ $2x$ $x \to -\infty$ $x \to -\infty$ $2x$	f(x)=0نحالامطالة مار $f(x)=0$	1	
$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{3}{2x - 4} = -\infty$	f(x)=0 عقاه	$x = \frac{1}{2}$ وفي $2x - 1$	
	مع م <u>حورانی ربی ب</u> $\frac{1}{4} = \frac{1}{4} : f(0)$	f(0) = 2(0) - 1	
y = 1 at $f(y) = 1$		2(0)	
(C) النمحنى $x=2$ النمحنى $x=2$ النمحنى $x=2$	النمحنى (C) هو (C_2) لأ		
f حساب $f'(x)$ وتشكيل جدول تغيرات الدالة f			
$f'(x) = \frac{2(2x-4)-2(2x-1)}{(2x-4)^2} = \frac{-6}{(2x-4)^2}$ يښا:			

 $\mathbb{R}-\{2\}$ وفي، الطل3نهاقص قت6مام لمجيى f'(x)