

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: 2018

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

المدة: 04 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على (03) صفحات (من الصفحة 1 من 5 إلى الصفحة 3 من 5)

التمرين الأول: (04 نقاط)

الدالة العددية المعرّفة والمتزايدة تماما على المجال $\infty[-\infty] + \infty$ ب $(x) = \frac{2x}{e.x+1}$ الدالة العددية المعرّفة والمتزايدة تماما على المجال f

 $u_{n+1} = f\left(u_{n}\right)$: n يعددية العددية المعرفة بحدها الأول $u_{0} = \frac{5}{4e}$ ومن أجل كل عدد طبيعي $u_{n+1} = f\left(u_{n}\right)$

. $u_n > \frac{1}{e}$: n والتراجع أنّه من أجل كل عدد طبيعي (1) (1)

,
$$u_{n+1} - u_n = \frac{e.u_n(\frac{1}{e} - u_n)}{e.u_n + 1}$$
 : n عدد طبیعي n عدد طبیعي (ب

ثم استنتج اتجاه تغير المتتالية (u_n) و برّر أنّها متقاربة.

 $v_n = \frac{e.u_n}{e.u_n-1}$: لتكن المتتالية (v_n) المعرفة من أجل كل عدد طبيعي n كما يلي: (v_n)

 v_n أثبت أنّ v_n متتالية هندسية أساسها 2 ، يطلب تعيين حدها الأول v_0 و عبارة v_n بذلالة v_n

. $\lim_{n\to +\infty}u_n$ من n من u_n من $v_n=1+\dfrac{1}{e.u_n-1}$: $\mathbb N$ من n من n من n بدلالة n بدلالة n ثم أحسب n

 $S_n = v_0 + v_1 + \dots + v_n$ حيث: $S_n = v_0 + v_1 + \dots + v_n$ المجموع $S_n = v_0 + v_1 + \dots + v_n$

4) أ) ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 2" على 7.

ب) عين قيم العدد الطبيعي n التي من أجلها S, يقبل القسمة على 7.

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

التمرين الثاني: (04 نقاط)

B(0;3;-1) ، A(0;0;2) الفضاء منسوب إلى المعلم المتعامد المتجانس $\left(o;\vec{i},\vec{j},\vec{k}\right)$ بنعتبر النقطتين المعلم المتعامد المتجانس المتحامد المتح

والمستوي
$$p$$
 المعرف بالتمثيل الوسيطي: $y=4t-2m+1$ حيث $z=t-2m-2$ عددان حقيقيان.

- له. اكتب معادلة ديكارتية للمستوي (Q) الذي يشمل النقطة A و (1-2;2;-1) شعاع ناظمي له.
 - (Q) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و يعامد المستوي (Q).
 - (p) معادلة ديكارتية للمستوي (x-y+2z+5=0) معادلة ديكارتية للمستوي (3).
 - (Q) بيّن أنّ المستوي (p) يشمل النقطة B و يعامد المستوي (Q).
 - لتكن M نقطة احداثياتها (2t;2t;-t+2) حيث tعدد حقيقي. (4
- أ) عين قيم t بحيث تكون d(M;(P)) = d(M;(Q)) (ترمز d الى المسافة بين نقطة و مستوي).
- A النقطتين (P) و (Q) و (Q) التي تمس كل من المستويين (Q) و (P) في النقطتين (P) و (P)

التمرين الثالث: (05 نقاط)

- . $z^2-2\sqrt{2}z+4=0$: z المعادلة ذات المجهول الأعداد المركبة المعادلة ذات المجهول (I
 - . $(o; \overline{u}, \overline{v})$ المستوي المركب منسوب إلى المعلم المتعامد المتجانس $(o; \overline{u}, \overline{v})$.

 $\left(z_{A}\right)$ لتكن النقطتين A و B لاحقتاهما $z_{A}=\sqrt{2}+i\sqrt{2}$ و $z_{A}=\sqrt{2}+i\sqrt{2}$ يرمز الى مرافق

- . اكتب على الشكل الأسّي كل من العددين المركبين z_A و z_B ، ثم بيّن أنّ العدد $\left(\frac{2}{z_B}\right)^{2018}$ تخيلي صرف (1
 - - $(-\frac{\pi}{2})$ احسب z_D لاحقة النقطة D صورة B بالدوران r الذي مركزه D و زاويته D
 - ACD ثم أستنتج طبيعة المثلث $\frac{z_C-z_A}{z_D-z_A}=-i$ ثم أستنتج طبيعة المثلث (4
 - ب) اوجد لاحقة النقطة E بحيث يكون الرباعي ACED مربعا.

التمرين الرابع: (07 نقاط)

. $f(x) = \frac{x}{x-1}e^{-x}$:ب $-\infty$;1[بالدالة العددية المعرفة على المجال f

. $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المعلم المتعامد المتجانس (C_f) و

اختبار في مادة: الرياضيات / الشعبة: تقنى رياضي / بكالوريا 2018

- . $\lim_{x\to -\infty} f(x)$ احسب النتيجة بيانيا و احسب النتيجة $\lim_{x\to -\infty} f(x)$ احسب (1
- - . كنب معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة صفر (T)
 - ب) $h(x) = e^{-x} + x 1$ [ب: $h(x) = e^{-x} + x 1$. $h(x) \ge 0$: $-\infty$; 1[بنه من أجل كل x من 1; ∞ . 1[∞ . 1[ادرس اتجاه تغیر الدالة 1 ثم استنتج أنه من أجل كل 1 من 1; 1
 - (C_f) بين أنّه من أجل كل x من $[1,\infty] = -\infty$ بين أنّه من أجل كل x من $[1,\infty] = -\infty$ بين أنّه من أجل كل x من $[1,\infty] = -\infty$ بيانيا.
- (5) أكتب معادلة المستقيم $A\left(-2;\frac{2}{3}e^2\right)$ في المعلم O و النقطة O و النقطة $A\left(-2;\frac{2}{3}e^2\right)$ ثم ارسم المستقيمين O أكتب معادلة المستقيم O الذي يشمل مبدأ المعال O الذي المجال O على المجال O المجال O على المجال O على المجال O المجال O المجال O على المجال O على المجال O ا
 - $\frac{x}{x-1} \le f(x) < e^{-x} : [-1;0]$ من أجل كل x من أجل كل x من أنه من أجل كل x من (6
- 7) m وسيط حقيقي ، ناقش بيانيا و حسب قيم الوسيط الحقيقي m عدد حلول المعادلة : mx ، حيث $x \in [-2;1[$

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

الموضوع الثاني

يحتوي الموضوع الثاني على (02) صفحات (من الصفحة 4 من 5 إلى الصفحة 5 من 5) التمرين الأقل: (04 نقاط)

. $u_n = 2(3)^n$ متتالية عددية معرّفة على \mathbb{N} بحدها العام كما يلي (u_n)

 $v_{n+1} = 5v_n + u_n$: N منتالية عددية معرّفة بحدها الأول $v_0 = 4$ و من أجل كل n من $v_n = 5v_n + u_n$

 $w_n = \frac{v_n}{u_n} + \frac{1}{2} : \mathbb{N}$ من n کل n من أجل کل n من أجل كل n

- اثبت أنّ (w_n) متتالية هندسية أساسها $\frac{5}{3}$ ، يطلب تعيين حدّها الأوّل.

 $v_n = 5^{n+1} - 3^n$: \mathbb{N} من n من أجل كل n من n بدلالة بدلالة n بدلالة n بدلالة n

ادرس حسب قيم العدد الطبيعي n ، بواقي القسمة الاقليدية للعددين "3 و "5 على 8.

 v_n عين حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد v_n على v_n

التمرين الثاني: (04 نقاط)

كيس به 7 كريات متماثلة، لا نفرق بينها باللمس ، منها 3 بيضاء و 4 خضراء.

نسحب عشوائيا و في آن واحد كريتين من الكيس.

ا احسب احتمال الحادثة A: " سحب كربتين مختلفتين في اللون ". (I)

." احسب احتمال الحادثة B: "سحب كريتين من نفس اللون ".

1) بزر أنّ قيم المتغير العشوائي هي lpha, -lpha, -lpha ثم عرّف قانون احتماله.

 $E(X) = -\alpha + \frac{300}{7}$. هو α هو α الأمل الرياضياتي للمتغيّر العشوائي α بدلالة α هو α هو α (2) بيّن أنّ الأمل الرياضياتي للمتغيّر العشوائي تكون اللعبة في صالح اللاعب.

التمرين الثالث: (05 نقاط)

(E) ... $4z^2-2z+1=0$: المعادلة ذات المجهول z التالية z التالية (E) ... (E) المعادلة z المعادلة ذات المجهول z التالية z الشكل الأسي حيث z و z حلا المعادلة z و z حلا المعادلة z و z على الشكل الأسي حيث z و z حلا المعادلة z

المستوي المركب منسوب إلى المعلم المتعامد المتجانس $O;\overline{u},\overline{v}$). نعتبر النقط B ، A و B المحقاتها C المحقاتها $z_B=1+i\sqrt{3}$ ، $z_A=4$

اختبار في مادة: الرياضيات / الشعبة: تقني رياضي / بكالوريا 2018

- ABC ثم حدد طبیعة المثلث $\frac{z_B-z_A}{z_C-z_A}$ ثم حدد طبیعة المثلث (1
- . بدوران مركزه A يطلب تعيين زاويته C بدوران مركزه A يطلب تعيين زاويته
- و استنتج بدقة طبيعة الرباعي \overline{CB} اوجد لاحقة النقطة D النقطة A بالانسحاب الذي شعاعه \overline{CB} و استنتج بدقة طبيعة الرباعي ACBD
 - 3) حدّد طبيعة z التي تُحقق ما يلي: z مجموعة النقط z من المستوي المركب ذات اللاحقة z التي تُحقق ما يلي: $|iz+\sqrt{3}-i|=|z-1+i\sqrt{3}|$
 - (γ) بين أنّ النقطة G مركز الدائرة المحيطة بالمثلث ABC تتتمي إلى (γ) .

التمرين الرابع: (07 نقاط)

- . $g(x)=2-x+\ln x:$ بعتبر الدالة العددية g المعرّفة على المجال $g(x)=2-x+\ln x$ بعتبر الدالة العددية و
 - أ) ادرس اتجاه تغيّر الدالة g على المجال]1;0
- e(x)=0 بين أنّ المعادلة g(x)=0 تقبل حلا وحيدا α حيث: g(x)=0
 - .]0;1[على المجال g(x) على المجال g(x) على المجال g(x)
- . $f(x) = \frac{1-2x+\ln x}{x-1}$: بالدالة العددية المعرّفة على المجال $[1;+\infty[$ بالمجال المعرّفة على المجال [ب
- . $\left(0;\overrightarrow{i},\overrightarrow{j}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
 ight)$
- ، ($f(x) = \frac{1-2x}{x-1} + \frac{\ln x}{x-1}$ على الشكل $f(x) = \frac{\lim_{x \to +\infty} f(x)}{x-1}$ ويمكن كتابة f(x) على الشكل $f(x) = \frac{\lim_{x \to +\infty} f(x)}{x-1}$ (1) ثم فسر النتيجتين بيانيا.
 - $f'(x) = \frac{g\left(\frac{1}{x}\right)}{(x-1)^2}$:]1;+∞[من المجال x من المجال عدد حقیقي x من المجال)1;+∞[(2
 - . بين أن f متزايدة تماما على $\left[rac{1}{lpha}
 ight]$ و متناقصة تماما على $\left[rac{1}{lpha}
 ight]$ ، ثم شكّل جدول تغيّراتها
 - y=-2 ادرس الوضع النسبي لـ C_{f} و المستقيم Δ ذي معادلة C_{f}
 - . ($f\left(rac{1}{lpha}
 ight) \! = \! -1,8$ ريعطى $C_f\left(C_f\left(rac{1}{lpha}
 ight)$) (يعطى المستقيمين المقاربين و المنحنى ($C_f\left(rac{1}{lpha}
 ight)$
 - 5) عيّن بيانيا قيم الوسيط الحقيقي m حتى تقبل المعادلة $m=\left|f\left(x
 ight)
 ight|$ حلّين متمايزين.