

دورة: 2019

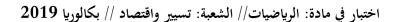
الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تسيير واقتصاد

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول


التمرين الأول: (04 نقاط)

- . $u_{n+1}=\frac{3}{4}u_n+2$ ، n عدد طبیعي المتتالیة العددیة المعرفة کما یلي $u_0=-4$: ومن أجل کل عدد طبیعي (u_n
 - u_{2} و u_{1} أ) احسب كلا من المن (1
 - . $u_n < 8$ ، n عدد طبیعی (ب
 - . ادرس اتجاه تغیر المتتالیة (u_n) واستنتج أنها متقاربة (2
 - . عدد حقیقی ، $v_{\scriptscriptstyle n}=u_{\scriptscriptstyle n}-\alpha$: نضع ، n عدد طبیعی ، α عدد (3
 - $v_{n+1} = \frac{3}{4}v_n \frac{1}{4}\alpha + 2$ ، $v_{n+1} = \frac{3}{4}v_n \frac{1}{4}\alpha + 2$ ، $v_{n+1} = \frac{3}{4}v_n \frac{1}{4}\alpha + 2$ (أ
 - v_0 عيّن قيمة العدد α حتى تكون المتتالية (v_n) هندسية أساسها عيّن قيمة العدد α
- . $u_{n}=-12\Big(rac{3}{4}\Big)^{n}+8$ ، n عبّر عن v_{n} بدلالة v_{n} بدلالة v_{n} نضع $\alpha=8$ نضع (ج
 - . $S_n = u_1 + u_2 + \ldots + u_n$ حيث: n بدلالة n بدلالة n بدلالة (4

التمرين الثاني: (04 نقاط)

نرمي نردا غير مزيف ذا ستة أوجه مرقمة من 1 إلى 6 مرتين متتاليتين ونسجل الرقم الظاهر على الوجه العلوي في كل مرة.

- 1) ما احتمال الحصول على رقمين زوجيين ؟
- 2) ما احتمال الحصول على رقمين جداؤهما يساوي 6 ؟
- 3) ما احتمال الحصول على رقمين أحدهما ضعف الآخر؟
- 4) ما احتمال الحصول على رقمين زوجيين أحدهما هو 2 ؟

التمرين الثالث: (05 نقاط)

يمثّل الجدول التالي تطور الواردات في الجزائر مقدرة بالمليار دولار من سنة 2009 إلى سنة 2014 .

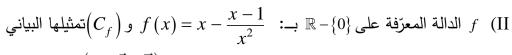
السنة	2009	2010	2011	2012	2013	2014
رتبة السنة x_i	1	2	3	4	5	6
الواردات y_i	39,29	40,47	47,25	47,49	54,85	58,33

(المرجع: المركز الوطنى للإعلام الآلي والإحصاء التابع للجمارك)

مثّل سحابة النقط $M_{i}ig(x_{i}\,;y_{i}ig)$ في معلم متعامد. (1

(نأخذ 1cm لكل سنة على محور الفواصل و 1cm لكل 10 مليار دولار على محور التراتيب).

2) جد إحداثيى النقطة المتوسطة G، ثم علّمها.


y=3,96x+34,09: بيّن أنّ معادلة (Δ) مستقيم الانحدار بالمربّعات الدّنيا لهذه السلسلة الإحصائية هي (Δ) مستقيم الانحدار بالمربّعات الدّنيا لهذه السلسلة الإحصائية هي ثمّ مثل (Δ). (تُدوّر النتائج إلى Δ).

4) اعتماداً على التعديل الخطى السابق، ابتداءً من أيّ سنة تفوق الواردات 77 مليار دولار؟

التمرين الرابع: (07 نقاط)

. الدالة المعرّفة على \mathbb{R} بـ : x-2:x-3=g و $g(x)=x^3+x-2:x-3=0$ هو مبيّن في الشكل $g(x)=x^3+x-2:x-3=0$

. \mathbb{R} على $g\left(x\right)$ واستنتج إشارة $g\left(1\right)$ على

 $(O\;;\;ec{i}\;,\;ec{j})$ في المستوي المنسوب إلى المعلم المتعامد والمتجانس

با حسب $\lim_{x\to 0} f(x)$ وفسّر النتيجة بيانيا.

$$f'(x) = \frac{g(x)}{x^3}$$
 : x بیّن أنّه من أجل کل عدد حقیقي غیر معدوم (2

استنتج اتجاه تغير الدالة f ثم شكّل جدول تغيراتها.

$$\cdot \left(C_f
ight)$$
 بيّن أنّ المستقيم (Δ) ذا المعادلة $y=x$ مقارب مائل للمنحنى (Δ

.(Δ) ادرس الوضع النسبي للمنحنى C_f و المستقيم (C_f).

.]
$$-1.4$$
 ; -1.3 [في المجال α في المجال $f(x)=0$ تقبل حلا وحيدا (4

. (C_f) ارسم (Δ) ثم المنحنى (5

الحسب
$$A$$
 مساحة الحيز المستوي المحدّد بالمنحنى (C_f) والمستقيمات التي معادلاتها:

$$x = 3$$
 $y = x = 1$

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 نقاط)

- . $(4x^2+3x-1)(x^2-5x+6)=0$ (E) : المعادلة \mathbb{R} المعادلة الأعداد الحقيقية \mathbb{R}
- p_i كيس به أربع كريات تحمل الأرقام 1 ، 3 ، 2 ، 1 نسحب منه كرية واحدة ونرمز ب p_i إلى احتمال سحب (2 . $p_4=2\alpha$ و $p_3=\alpha$ ، $p_2=\alpha^2$ ، $p_1=3\alpha^2$ و $p_3=\alpha$. $p_4=2\alpha$ و $p_3=\alpha$. $p_4=2\alpha$ و $p_3=\alpha$.
 - : نضع $\alpha = \frac{1}{4}$ نضع (3

. "سحب كرية تحمل رقما فرديا A

 $. \ "4$ سحب كرية تحمل الرقم : B

. " 3 يسحب كرية تحمل رقما أصغر من أو يساوي : C

. "(E) " سحب كرية تحمل رقما حلا للمعادلة " : D

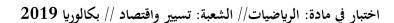
التمرين الثاني: (04 نقاط)

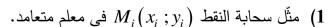
.
$$\begin{cases} u_2+2u_5=27\\ u_1=\frac{9}{2} \end{cases}$$
: — ب $\mathbb N$ يلمتتالية المعرفة على $\begin{pmatrix} u_n \end{pmatrix}$

- . r احسب حدها الأول u_0 واساسها (1
- . n بدلالة u_n بدلالة (2
- . S_2 و S_1 بيّن أن العدد 2019 حد من حدود هذه المتتالية ثم احسب كلا من المجموعين و S_1

.
$$S_2 = u_2 + u_4 + u_6 + \dots + u_{1344}$$
 و $S_1 = u_1 + u_2 + u_3 + \dots + u_{1344}$ حيث

.
$$S_3 = u_1 + u_3 + u_5 + \dots + u_{1343}$$
: حيث S_3 حيث – استنتج حساب المجموع


.
$$v_n = e^{6-2u_n}$$
 : بالمتتالية العددية المعرفة على (v_n) (4


.
$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$
 | $-$

التمرين الثالث: (05 نقاط)

يمثل الجدول التالي تطور الإنتاج السنوي (الوحدة: الطن) لأحد أنواع الأسماك في حوض مائي لتربية الأسماك.

السنة	2013	2014	2015	2016	2017	2018
x_i الرتبة	1	2	3	4	5	6
y_i (بالطن) الإنتاج	490	510	595	630	840	999

(نأخذ 1cm لكل سنة على محور الفواصل و 1cm لكل 1cm طن على محور التراتيب) .

- عد إحداثيي النقطة المتوسطة G لهذه السّحابة.
- بيّن أنّ معادلة لمستقيم الانحدار بالمربعات الدنيا لهذه السلسلة هي: y = 102 x + 320,33 ومثّله بيانيا.
 - 4) باعتبار أنّ كمية الإنتاج تتبع نفس الوتيرة:
 - أ) ما هي كمية الإنتاج المتوقعة لسنة 2023؟
 - ب) ابتداءً من أي سنة تتجاوز كمية الإنتاج 2000 طن؟

التمرين الرّابع: (07 نقاط)

- . $g(x) = 2x + 6 e^{2x+1}$: الدالة العددية المعرفة على المجال [$-\infty$;0] الدالة العددية المعرفة على المجال
 - . $\lim_{x\to\infty} g(x)$ أحسب (أ (1
 - . ادرس اتجاه تغیر الدالة g على المجال $[0\,;\infty-[$ ثم شكل جدول تغیراتها
 - . $-3 < \alpha < -2.9$: حيث α حيث g(x) = 0 : قبل حلا وحيدا α حيث (1) (2)
 - .] $-\infty$; 0] على المجال g(x) على استنتج إشارة
- $f(x) = -2x^2 12x + e^{2x+1}$: كما يلي $f(x) = -2x^2 12x + e^{2x+1}$ الدالة المعرفة على المجال [0]
 - . $\left(O;\vec{i},\vec{j}\,
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد $\left(C_f
 ight)$
 - حيث الوحدة على محور الفواصل 1cm وعلى محور التراتيب 0.5cm
- . f'(x) = -2g(x) :] $-\infty$; 0] من المجال x عدد حقیقی عدد عدد عقیقی (1
 - .] $-\infty$; 0] استنتج اتجاه تغیر الدالة f على المجال (2
 - . f أحسب أ $\lim_{x \to \infty} f(x)$ أحسب (3
- . [-4;0] على المجال $f(\alpha)=-2\alpha(\alpha+5)+6$: ثم ارسم $f(\alpha)=-2\alpha(\alpha+5)+6$: بيّن أنّ
 - . احسب بدلالة α التكامل : $\frac{1}{2}\int\limits_{\alpha}^{0}f\left(x\right)\,dx$: احسب بدلالة α التكامل : (5

انتهى الموضوع الثانى