الإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة			
مجموعة	1	عناصر الإجابة (الموضوع الأوّل)	
التمرين الأوّل: (04 نقاط)			
1	2x0.5	. الاقتراح الصحيح: ج $E(X) = -\frac{3}{20}$ ، التبرير (1	
1.5	0.5+1	$5^{n+1} - n^2$ (الاقتراح الصحيح: ب) (2 $S_n = 4(1+5^1+5^2++5^n) - 2(1+2++n) + (n+1) = 5^{n+1} - n^2$ التّبرير:	
1.5	0.5+1	[- $\ln 2$; $\ln 2$] (الاقتراح الصحيح: أ) [- $\ln 2$; $\ln 2$] (التّبرير: $-2e^{2x} + 5e^{x} - 2 \ge 0$) التّبرير: $-2e^{2x} + 5e^{x} - 2 \ge 0$	
	,	التّمرين الثّاني: (04 نقاط)	
0.5	0.5	$P(\overline{A}) = \frac{4}{6} = \frac{2}{3}$ (1)	
0.75	0.75	$P_A(M) = \frac{C_4^2 + C_6^2}{C_{10}^2} = \frac{6+15}{45} = \frac{7}{15}$ (2)	
1.75	1	3 شجرة الاحتمالات: M $\frac{7}{15}$ M $\frac{8}{8}$ $\frac{1}{5}$ M $\frac{2}{3}$ M $\frac{13}{28}$ M $\frac{15}{28}$ M	
	0.75	$P(M) = P(A) \times P_A(M) + P(\overline{A}) \times P_{\overline{A}}(M) = \frac{1}{3} \times \frac{7}{15} + \frac{2}{3} \times \frac{13}{28} = \frac{293}{630}$	
1	0.25x4	$P_{\overline{M}}(A) = \frac{P(A \cap \overline{M})}{P(\overline{M})} = \frac{\frac{1}{3} \times \frac{8}{15}}{1 - \frac{293}{630}} = \frac{8}{45} \times \frac{630}{337} = \frac{112}{337} $ (4	
		التّمرين الثّالث: (05 نقاط)	
1	0.25 + 0.75	: نجد: $u_n=-4$ ، نجد: $u_n=-4$ ، نجد: $u_n=-4$ ، نجد: $u_n=-4$ ، بالتّالي من أجل كل $u_n=-4$ ، من $u_n=-4$	

العلامة		/ 1 " £ t t \ T
مجموعة	مجموعة	عناصر الإجابة (الموضوع الأوّل)
	0.75	$v_{n+1} = u_{n+1} + 4 = \frac{3}{4}(u_n + 4) = \frac{3}{4}v_n$ لينا: (أ (2)
	0.5+0.25	$v_n = (\alpha + 4) \left(\frac{3}{4}\right)^n$ و $v_0 = \alpha + 4$:
	0.5	$u_n = (\alpha + 4) \left(\frac{3}{4}\right)^n - 4$ ومنه:
4	0.5	(u_n) اینا: $u_n = -4$ اینا (u_n) اینا $u_n = -4$
	1	$S_n = 4 \left[(\alpha + 4) \left(1 - \left(\frac{3}{4} \right)^{n+1} \right) - (n+1) \right]$ نجد: (ج
	0.5	$\lim_{n\to+\infty} S_n = -\infty \text{9}$
	<u>, </u>	التّمرين الرابع: (07 نقاط)
	0.5	$\lim_{x \to \infty} f(x) = +\infty : \text{i.s.} $ (1) (1)
	0.25	(C_f) التّفسير: المستقيم ذو المعادلة $x=0$ مقارب لـ
2	0.5	. $\lim_{x \to +\infty} \frac{\ln x}{x^2} = 0$: لأنّ $\lim_{x \to +\infty} f(x) = +\infty$ ولدينا: $\lim_{x \to +\infty} f(x) = +\infty$
	0.25	ب) لدينا: $\lim_{x\to +\infty} [f(x)-(x-1)] = \lim_{x\to +\infty} -\frac{\ln x}{x^2} = 0$ با لدينا: $\lim_{x\to +\infty} [f(x)-(x-1)] = \lim_{x\to +\infty} -\frac{\ln x}{x^2} = 0$
		$+\infty$ عند (C_f) مائل للمنحنى
	0.5	(Δ) المنحنى (C_f) فوق (Δ) على المجال $[0;1]$ المنحنى (C_f) تحت (C_f) المنحنى $[1;+\infty[$ على المجال $[0;1]$ و $[0,1]$
	0.25x2	$g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$ و $g'(x) > 0$ و $g'(x) = 3x^2 + \frac{2}{x} :]0; + \infty[$
1.5	0.25	x بالتّالى g متزايدة تماما على المجال $\infty+\infty$
1.5	0.25	رب) لدينا: $g(1) = 0$ و بما أنّ g متزايدة تماما على المجال $g(1) = 0$ نجد:
	0.5	[0;1] على المجال $[0;1]$ و $[0;1]$ على المجال $[0;1]$
1.25	0.5	$f'(x) = 1 - \frac{1 - 2\ln x}{x^3} = \frac{g(x)}{x^3} :]0; +\infty[$ من أجل كلّ x من أجل كلّ (3)
	0.5	$[1;+\infty[$ الدّالة f متناقصة تماما على $[0;1]$ ومتزايدة تمامًا على الدّالة f
	0.25	جدول التّغيرات
	0.25	$x=\sqrt{e}$ ادينا $f'(x)=1$ تعني $f'(x)=1$ أي $f'(x)=1$
0.5	0.25	$y=x-1-rac{1}{2e}$ بالتّالي (C_f) يقبل مماسا

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)
1	0.25x2 0.5	(C _f) θ (Δ) (T) elimin (5) (C0) (C1) (C2) (C3) (C4) (C4) (C5) (C6) (C6) (C7) (C6) (C7) (C7)
	0.25	اً) بیان أنّ h دالة زوجیة h دالة زوجیة
0.75	0.25	ومنه: $\begin{cases} h(x) = -f(x) ; x > 0 \\ h(x) = x + 1 + \frac{\ln(-x)}{x^2} ; x < 0 \end{cases}$
	0.25	على المجال $0;+\infty$ يكون (C_h) نظير (C_f) بالنسبة إلى حامل محور الفواصل ونحصل على (C_h) على المجال $-\infty;0$ بالتّناظر بالنسبة إلى حامل محور التّراتيب.

العلامة		/ ****** - * *** ** * * * * * * * * * *
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثَّاني)
		التمرين الأوّل: (04 نقاط)
1.5		1) الاقتراح الصحيح: ج) غير رتيبة.
	1+0.5	$]0;+\infty$ التّبرير: $\frac{1-x}{x}$ و $f'(x)$ تغيّر إشارتها على المجال المجال
1	0.5+0.5	$P = \frac{C_3^1 \times C_4^2 + C_3^2 \times C_4^1}{C_7^3} = \frac{6}{7}$: الاقتراح الصحيح أ $\frac{6}{7}$ (أ :حصحيح) الاقتراح الصحيح (2)
1.5	1+0.5	$\ln(u_n) = n - \frac{1}{2}$: الاقتراح الصحيح (أ يُ التّبرير (ئ ي التّبرير) (ئ الاقتراح الصحيح)
1.3		$S_n = (0 - \frac{1}{2}) + (1 - \frac{1}{2}) + (2 - \frac{1}{2}) + \dots + (n - \frac{1}{2}) = \frac{n(n+1)}{2} - \frac{n+1}{2} = \frac{n^2 - 1}{2}$
	,	التّمرين الثّاني: (04 نقاط)
1.5	0.25x4 0.5	$\frac{3}{5}$ هجرة الاحتمالات: $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$ $\frac{3}{5}$
		$\frac{2}{5}$ $R = \frac{3}{4}$ R $\frac{3}{4}$ R $P = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{1}{4} = \frac{17}{50}$: احتمال أنّ تكون الكريّة المسحوبة الثّانية حمراء:
	0.5	ر. المجموعة قيم المتغيّر العشوائي X هي: $\{0;1;2\}$.
2.5	3x0.5	$P(X=1) = \frac{3}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{3}{4} = \frac{27}{50}$ لدينا: $P(X=2) = \frac{1}{10}$ ونجد: $P(X=0) = \frac{9}{25}$
	0.25x2	$E(X) = \frac{37}{50}$ نجد: (ج
		التّمرين الثّالث: (05 نقاط)
0.75	0.25x3	نجد: 3 = u_1 و u_2 = 9 ، التّخمين: u_n متزايدة تماما.
	0.25+1	$v_0=1$ و $v_{n+1}=u_{n+1}-(n+1)-1=3$ نجد: بالتّالي (v_n) هندسية أساسها 3 و (v_n)
2.75	0.5+0.5	$u_n = 3^n + n - 1$ و $v_n = 3^n$ نجد: (ب
	0.25x2	ج) لدینا: $u_n = u_{n+1} - u_n = 2 \times 3^n + 1$ خبنا: بدینا (ب

العلامة		/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
		اً) من أجل كل عدد طبيعي n لدينا: n
	0.25x2	$S_n = (v_0 + v_1 + v_2 + \dots + v_n) + (-1 + 0 + 1 + \dots + (n-1))$
1.5	0.5	$S_n = \frac{1}{2} (3^{n+1} + n^2 - n - 3)$ إذن:
	0.5	$\lim_{n\to +\infty} S_n = +\infty (\mathbf{\psi}$
		التّمرين الرابع: (07 نقاط)
0.25	0.25	$\mathbb R$ الأنّ (γ) يقع فوق (Δ) على الدينا: من أجل كل x من x من $e^x-x>0$ لأنّ الدينا
0.25	0.25	$g(x) < 0$: على $]0;+\infty$ لدينا: $g(x) > 0$ و على $]0;+\infty$ لدينا
1	2x0.25	$\lim_{x \to -\infty} f(x) = -1 int_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(-1 + \frac{2}{1 - xe^{-x}} \right) = 1$ لدينا: (1(III)
	2x0.25	(C_f) : التّفسير $y=-1$ و $y=-1$ معادلتا مستقيمين مقاربين ل
	0.5	: لدينا x عدد حقيقي x لدينا x ادينا x عدد حقيقي x لدينا y (y) من أجل كل عدد حقيقي y y) من أجل y
1.75	0.5	(1-x) من إشارة $f'(x)$ من إشارة (x)
	2x0.25	، $[1;+\infty[$ بالتّالي: الدّالة f متزايدة تماما على $[1;+\infty[$ ومتناقصة تماما على f
	0.25	. جدول التّغيرات، $f(1) = \frac{e+1}{e-1}$
	0.5	y = 2x + 1 : (T) أ) معادلة للمماس (3)
1.75	0.5	$f(x) - (2x+1) = \frac{g(x)}{e^x - x} : x$ بیان أنّه من أجل كل عدد حقیقي
	0.5	(T) تحت (C_f) المنحنى (C_f) فوق (T) على المجال $[-\infty;0[$
		$(C_f) \cap (T) = ig\{A(0;1)ig\}$ و $ig]0;+\inftyig[$ على المجال
	0.25	(C_f) نقطة انعطاف للمنحنى A
0.75	0.5]- ∞ ;1] بيان أنّ المعادلة $f(x)=0$ تقبل حلا وحيدا α في المجال $f(x)=0$
0.75	0.25	$0.6\langlelpha\langle-0.5$ التّحقق أنّ $-0.6\langlelpha\langle-0.5$

تابع للإجابة النموذجية لموضوع اختبار مادة: الرياضيات/ الشعب(ة): علوم تجريبية/ بكالوريا 2020

العلامة		/ *****
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثّاني)
1.25	0.25 2x0.25 0.5	(C_f) (imilary) ellamination (C_f) (C_f