العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	ماعر الإجاب (الموصوح الأول)
1.75	<mark>01</mark>	التمرين الأول: (04 نقاط) 1) تمثيل الحدود
	0.75	- التخمين: (u_n) المتتالية متزايدة تماما ومتقاربة نحو $(1-)$
01	01	$-3 \leqslant u_n < -1$ البرهان أنّ (2)
	0.25	$.u_{n+1}+1\geqslant \frac{3}{4}(u_{n}+1)$ اً/ تبيان أنّ (3
0.75	0.25	$u_n+1\geqslant -2\left(\frac{3}{4}\right)^n$ بر استنتاج أنّ
	0.25	$\lim_{n\to+\infty}u_n=-1 -$
0.5	0,25	$8\left[\left(\frac{3}{4}\right)^{n+1}-1\right] \le (u_0+1)+(u_1+1)+\dots+(u_n+1)<0$ اثبات أنّ - (4
	0.25	$\displaystyle \lim_{n o +\infty} S_n = -\infty$ ومنه $\displaystyle S_n < -n-1$ عما سبق نجد - $S_n < -n-1$
	01	التمرين الثاني: (04) نقاط) $\overrightarrow{OB} = \frac{1}{1} + \frac{0}{1}$ لدينا $\overrightarrow{OB} = \frac{1}{1} + \frac{1}{1}$ إذ \overrightarrow{OB} غير مرتبطان خطيا.
2.5	0.75	(OAB) ب $\vec{n}\cdot \overrightarrow{OA}=0$ و $\vec{n}\cdot \overrightarrow{OB}=0$ يعني \vec{n} شعاع ناظمي للمستوي
	0.75	(OAB): 2x + y - z = 0
01	0,5	$\begin{cases} 2x + 2y + 6z - 11 = 0 \\ 2x + 4z - 5 = 0 \end{cases} \text{End } M \in (\Delta) - (2)$ $[OB] [OB] [DB] [DA] [DB] [DB] $

		$M_{\sigma}(D)$, $M_{\sigma}(D)$: δS , $M_{\sigma}(A)$ (2)
	0.25	$M \in (P_2)$ و $M \in (P_1)$ یکافئ $M \in (\Delta)$ میکافئ $M \in (\Delta)$ و ر
	0.20	OM = AM و $OM = BM$. یکافئ : $OM = BM = AM$
		$OM=BM=AM$. یک نیم Ω
0, 5	0.25	
		$(\Omega \in (\Delta))$ و $\Omega \in (OAB)$ و $\Omega \in (OAB)$
		$\Omega\left(-\frac{1}{6},\frac{5}{3},\frac{4}{3}\right)$
		التمرين الثالث (05 نقاط):
1 ,5	1 ,5	,
		$S = \{1 + i; 1 - i; \sin \theta + i \cos \theta; \sin \theta - i \cos \theta\}$ مجموعة حلول المعادلة هي $S = \{1 + i; 1 - i; \sin \theta + i \cos \theta; \sin \theta - i \cos \theta\}$
	<mark>0,5</mark>	$z_A = \sqrt{2} e^{i \frac{\pi}{4}}$ (1 .II)
	,	
1.05	0,25	$z_{B} = \sqrt{2} e^{-i \frac{\pi}{4}}$
1,25	0,25	$\mathbf{S} z_{C} = e^{i\left(\frac{\pi}{2} - \theta\right)}$
	0,23	C
	0,25	$z_D = e^{i\left(\theta - \frac{\pi}{2}\right)}$
		_
	0,5	$z_E = e^{i\frac{\pi}{2}} (2)$
1,5	0.75	$ z_c = z_D = z_E = 1$
1 ,0	0.25	. 1 و E تنتمي إلى الدائرة التي مركزها مبدأ المعلم O و طول نصف قطرها D
0,5	<mark>0,5</mark>	$ heta=rac{-3\pi}{4}$ و منه $e^{i\left(rac{\pi}{2}- heta ight)}=e^{irac{5\pi}{4}}$ الإن $z_{B}-z_{A}=(2\sqrt{2}-2)e^{irac{\pi}{4}}(z_{C}-z_{A})$ (3)
0,25	0,25	$k \in \square$; $n = 4k + 2$ و منه $n = 2[4]$ أي $n = 2[4]$ أي $n = 2[4]$
		4 2 4 2
	0.25	التمرين الرابع: (07 نقاط):
0.75	0,25	اً f مستمرة عند 0 من اليمين.
		f(h) - f(0)
	0,5	ب (C_f) يقبل نصف مماس عمو دي. $\lim_{h o 0} \frac{f(h) - f(0)}{h} = + \infty$
	0,75	$\lim_{\substack{x \to 1 \\ x \to 1}} f(x) = -\infty \cdot \lim_{\substack{x \to 1 \\ x \to 1}} f(x) = +\infty \cdot \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty / (2)$
		1
	0,5	$f'(x)=1+\frac{1}{x(\ln x)^2}$ /
2,5		
	0,5	$]0;1[$ و منه الدالة f متز ايدة تماما على $]0;1[$ و على ا $]0;+\infty[$

	0,75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25	$+\infty$ بجوار (C_f) المقارب المائل للمنحني $y=x+1$ (3) المقارب المائل المنحني $y=x+1$
0.75	0,5	(Δ) اعلى (C_f) المنحني (C_f) اعلى (Δ) المنحني (C_f) اعلى (Δ) المنحني (C_f) المنحني (C_f) المنحني (C_f) المنحني المجال (C_f)
	0,5	(مبر هنة القيم المتوسطة) حيث $f(lpha)=0$ - (4 حيث $f(lpha)=0$ - (4
01	0,5	$y = \left(\alpha + 3 + \frac{1}{\alpha}\right)(x - \alpha)$: ω النقطة ω
0.75	0,75	(C_{j})
	0,5	$h(x) \ge 0$ اذن $h(1) = 0$ و منه h متزایدة تماما علی $h(1) = 0$ و $h(x) = \ln x$ / (6
01	0,25	$f(x) - x + \frac{1}{x \ln x} = \frac{h(x)}{x \ln x} / $
	0,25	$x - \frac{1}{x \ln x} < f(x) < x + 1$ استنتاج أنّ:
0,25	0,25	$\int_{\alpha}^{e} (x - \frac{1}{x \ln x}) dx < \mathcal{A} < \int_{\alpha}^{e} (x + 1) dx$ لاينا: (7) لاينا: $\frac{1}{2} (e^{2} - \alpha^{2}) - \ln(\alpha + 1) < \mathcal{A} < \frac{1}{2} (e - \alpha)(e + \alpha + 2)$ و منه:

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	التمرين الأول: (04 نقاط)
	2×0.5	· ,
1.5	4 X U. S	$\alpha = 2018 \ \beta = 2017 \ \neg 1$
	0.5	$p \gcd(\beta, \frac{\alpha}{2}) = 1$
1	2×0.5	$(x,y) = (2017k + 2,1009k + 1)/k \in \square$
0.5	0.5	$k \in \square$ مع $a = 2035153k + 2019$ -3
	0.55	-4 أ. دور بواقي القسمة هو 3 و البواقي هي 4،7،1
1	0.75	$42L = 7^{2019} - 7$ ب.
	0.25	ـ باقي القسمة هو 3
		التمرين الثاني: (04 نقاط)
0.75	0.25x3	$p(C) = \frac{8}{126}$ $(p(B) = 1)$ $p(A) = \frac{5}{126}$ -1
	0.5	
	0.5	$X \in \{0,1,2,3\} (1-2)$
	4x0.5	قانون احتمال $X_i egin{pmatrix} 0 & 1 & 2 & 3 \end{bmatrix}$
3.25		$p(X_i)$ 6 45 60 15
		120 120
	0.5	$E(X) = \frac{210}{126} = \frac{5}{3} (\because$
	0.25	$p(X^2 - X > 0) = \frac{75}{126} = \frac{25}{42} (\Rightarrow$
		التمرين الثالث: (05 نقاط)
0.5	0.5	$m \in]1,5[\qquad (1$
1	2x0.5	$s = \{-2+i, -2-i\}$ (2
0.5	0.5	$ \qquad \qquad \alpha = -2 + \sqrt{3} (3) $
	0.5	. $rac{z_c-z_E}{2}=e^{irac{\pi}{2}}$ كتابة العدد (4
1.5	0.75	$z_A - z_B$
		$(AB) \perp (EC)$ (†
	0.25	2 ب) دائرة مركزها C دائرة مركزها C دائرة مركزها C

	0.5-:2	
	0.5x2	$a = -\frac{2\pi}{3}$ وزاویته $a = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ (أ (5
1.5	0.5	$-2+rac{\sqrt{3}}{3}$ ب G مركز ثقل المثلث ABC هي G
		و بما ان $r(G)=G$ اذن G مركز الدوران
		التمرين الرابع (07 نقاط):
		$g'(x) = \frac{(2x^3 + 2x^2 + x + 1)}{x^2} e^{-\frac{1}{x}}$ لدينا (1 (I
	0.5	X
0.75	0.25	$g'(x) = \frac{(x+1)(2x^2+1)}{x^2} e^{-\frac{1}{x}}$ بیان أنّ:
		. g متزایدة تماما علی $g = [0;+\infty[$
	0.5	
1	0.5	$0.9 < \alpha < 1$ المعادلة $g(x) = 0$ تقبل حل وحيد α حيث $g(x) = 0$
	0.5	_ اشارة (g(x)
	0.25x2	$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = +\infty i \lim_{x \to +\infty} f(x) = +\infty \text{(i)} \text{(II)}$
1.75	0.75	$f'(x) = \frac{g(x)}{x^2}$ ب) اثبات أن
	0.25	ـ استنتاج اتجاه التغير
	0.25	 جدول التغيرات
0.75	0.5	$\lim_{x \to +\infty} \left(x e^{\frac{-1}{x}} - x \right) = \lim_{t \to +\infty} -\frac{e^{t} - 1}{t} = -1 $ تبيان أن (2)
0.75	0.25	(C_f) استنتاج أن $y=x$ معادلة للمستقيم المقارب المائل لـ $y=x$
	0.25	$\lim_{x \to +\infty} h(x) = 0 (5)$
0.75	0.25]0;+∞[علی متناقصة تماما علی $h \cdot h'(x) = \frac{1}{x^2} \left(e^{-\frac{1}{x}} - 1 \right)$
	0.25	$h(x) > 0$: $]0;+\infty[$ من x من أجل كل x من أجل كل
	0.25	f(x) - x = (1+x)h(x): ب) التحقق أن
0.5	0.25	(Δ) فوق (C_f) : استنتاج الوضع النسبي (C_f) فوق
0.75	0.75	(C_f) و (Δ) الرسم (Δ) و (Φ

0.75	0.5	$u_{1} = \frac{1}{e}$ و $q = \frac{1}{e}$ هندسية أساسها (u_{n}) ، $u_{n} = e^{-n}$ (أ (5) $\frac{n}{n+1} f\left(\frac{1}{n}\right) - \frac{1}{n+1} = u_{n} + (n-1)$ بالدينا (ب
	0.25	$s_n = \frac{1 - e^{-n}}{e - 1} + \frac{n}{2}(n - 1)$ is $s_n = (u_1 + u_2 + \dots + u_n) + (0 + 1 + \dots + (n - 1))$