التصحيح المفصل بكالوريا 2018 شعبة الآداب و الفلسفة و اللغات الأجنبية الموضوع الأول

التمرين الأول:

1) دراسة بواقي قسمة "2 على 5:

$$2^{4k}\equiv 1$$
[5] و $2^{1}\equiv 1$ و $2^{1}\equiv 1$ و $2^{1}\equiv 1$ و $2^{2}\equiv 1$ و $2^{3}\equiv 3$ و $2^{2}\equiv 4$ و $2^{3}\equiv 2$ و $2^{3}\equiv 1$

- 4											
	n =	4 <i>k</i>	4k+1	4k + 2	4k + 3	عدد طبيعي k					
	باقي قسمة 2″ على 5 هو	1	2	4	3						

- $a = \frac{2016}{4} = 504$ كافئ a = 2016 = 4a كافئ a = 2016 = 4a كافئ a = 2016 = 4a تعيين العدد الطبيعي a = 2016
- . $2018=4\times504+2$ يقبل القسمة على 5 لدينا =4[5] لأن $=2^{2018}+2017^8-5$ لأن $=2018=4\times504$ (3)

$$8=4\times2$$
 و منه $[5]$ $2017^8\equiv1[5]$ إذن $[5]$ 2017 $\equiv2[5]$

. 5 على 5 هو 0 فهو قابل للقسمة على 5 . $2^{2018} + 2017^8 - 5$

(4 التحقق : لدينا
$$[5]$$
 عالرفع إلى قوى n نجد $[5]$ عالم خواص الموافقة)

. $(-3)^n \equiv 2^n \begin{bmatrix} 5 \end{bmatrix}$ خبد [5] فوى [5] الرفع إلى قوى [5]

ب-تعيين قيم العدد الطبيعي n حتى يكون [5] عن [5] عن [5] يكافئ [5] عن [5]

التمرين الثاني

تعيين الاقتراح الصحيح مع التبرير

- ا المتتالية (u_n) و التي عبارة حدها العام $u_n=n^2-1$: ندرس اتجاه تغيرها نحسب $u_{n+1}=(n+1)^2-1$ ثم الفرق $u_{n+1}=(n+1)^2-1$ و هو عدد طبيعي موجب إذن المتتالية متزايدة و $u_{n+1}-u_n=(n+1)^2-n^2$ منه الإجابة الصحيحة هي أ).
 - q=2 المتتالية (v_n) الهندسية و التي حدها الأول $v_1=3$ أساسها $v_n=2$ المتتالية $v_n=2$ المتتالية $v_n=0$ المتتالية و التي حدها العام هي $v_n=v_1\times q^{n-1}$ و منه $v_n=v_1\times q^{n-1}$ إذن الإجابة الصحيحة هي ب

. (أ ي المجموع هو
$$S_n = v_1 \frac{2^n - 1}{2 - 1} = 3(2^n - 1)$$
 هو الإجابة الصحيحة هي

 $\Omega = \{11;12;13;14;15;16;17;18;19; 20\}$ الكريات الكلية هي (3

الكريات التي تحمل رقم مضاعف للعدد 3 هي $A = \{12;15;18\}$ و احتمالها هو $P(A) = \frac{3}{10}$ و منه الإجابة الصحيحة هي ب) الكريات التي تحمل رقم فردي مضاعف للعدد 3 هو $A = \{15;15;18\}$ و منه احتمالها $A = \{15\}$ و منه الإجابة الصحيحة هي ج).

التمرين الثالث:

$$f(x) = x^3 - 3x^2$$

- . عدد فردي $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^3 = -\infty$ و $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 = +\infty$ لأن 3 عدد فردي (1
 - 0 و منه f'(x) = 3x(x-2) لها حذرين هما $f'(x) = 3x^2 6x$ و منه و $f'(x) = 3x^2 6x$

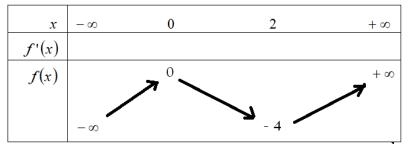
إشارتها حسب الجدول التالي

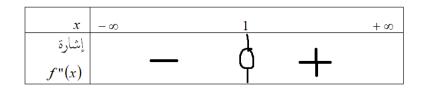
x	$-\infty$	0	2		+ ∞
f'(x) إشارة	+	Ġ.	— ф	+	

. $[0\,;2]$ ب-و منه الدالة f متزايدة على المجالين $[0\,;2]$ و $[0\,;2]$ و متناقصة على المجال

جدول تغيرات

(3) إثبات أن المنحنى
$$(C_f)$$
 يقبل نقطة انعطاف لذالك $f''(x) = 6x - 6$ لثانية





نلاحظ من الجدول أن " f تنعدم عند 1 و تغير إشارتها و منه النقطة ذات الفاصلة 1 هي نقطة انعطاف و هي B(1;-2) (لأن f(1)=-2)

y = f'(x)(x-1) + f(1) هي (T) معادلة الماس (4

. لدينا y = -3x + 1 و y = -3(x - 1) - 2 و منه y = -3(x - 1) - 2 و منه y = -3(x - 1) - 2 هي معادلة الماس y = -3(x - 1) - 2

وقاط تقاطع (C_f) مع حامل محور الفواصل هي التي تكون فواصلها حل للمعادلة f(x)=0 يكافئ $x^3-3x^2=0$ و منه x=0 و منه x=0

(T) و (C_f) و المنحنى (C_f)

6) حل بيانيا المتراجحة f(x) > 0 يعني ايجاد فواصل النقاط من (C_f) التي يكون فيها (C_f) يقع فوق حامل محور الفواصل من البيان نلاحظ أن (C_f) يكون فوق حامل محور الفواصل على المجال $[3; +\infty]$

و $f(x) + 4 = x^3 - 3x^2 + 4$: إثبات المساواة (7

 $(x+1)(x-2)^2 = (x+1)(x^2-4x+4)$

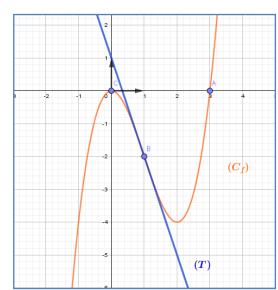
إذن $(x+1)(x-2)^2 = x^3 - 4x^2 + 4x + x^2 - 4x + 4$

 $f(x)+4=(x+1)(x-2)^2$ $(x+1)(x-2)^2=x^3-3x^2+4$

 $(x+1)(x-2)^2 = 0$ کافئ f(x)+4=0 کافئ f(x)=-4 حل المعادلة

 $(x-2)^2 = 0$ أو (x+1) = 0

 $S = \{-1; 2\}$ أو x = 2 و هي حلول المعادلة



التصحيح المفصل للموضوع الثاني شعبة الآداب و الفلسفة و اللغات بكالوريا 2018

التمرين الأول:

a=4b+6 لدينا

على 4 على a على 4 تعيين باقى قسمة a

طرقة 1: لدينا a=4(b+1)+2 و منه a=4b+4+2 باقى القسمة هو

طريقة 2 : لدينا $a \equiv 6$ و منه $a \equiv 6$ و منه $a \equiv 6$ و منه $a \equiv 6$ القسمة $a \equiv 6$ هو $a \equiv 6$

a العددان a و a متوافقان بتردید (2

 $.\ a \equiv b[3] \ \text{ii} \ a \equiv 4b + 6[3] \ \text{otherwise} \ a \equiv 4b + 6[3] \ \text{otherwise} \ a = 4b + 6[3] \ \text{otherwise} \ a = 4b + 6[3]$

b = 489 نصع (3

أ - التحقق $a+1=13\times151$ لدينا a=4b+6=4(489)+6=1962 و منه a=4b+6=4(489)+6=1962 لدينا a=-1[13] للعدد 13 إذن محققة .

ب -استنتاج باقي قسمة $a^{2018} + 40^{2968}$ على 13 لدينا $a^{2018} = 1$ و منه (1) و منه $a^{2018} = 1$ لأن الأس زوجي $a^{2018} + 40^{2968} = 1$ و منه (2) نجد (2) نجد (13] ± $a^{2018} + 40^{2968} = 1$ و منه (2) خد (2) خد (13] ± $a^{2018} + 40^{2968} = 1$ و منه (2) خد (2) خد (2) خد (2) خد (3) خد (40²⁹⁶⁸ = 1 أن الأس زوجي

: 13 قابلا للقسمة $a^{2n}+n+3$ تعيين قيم n حتى يكون (4

 $a^{2n}+n+3\equiv 0$ راً عدد زوجي و منه $a^{2n}+n+3\equiv 0$ و منه $a^{2n}=1$ لأن $a^{2n}+n+3\equiv 0$ عدد زوجي و منه $a^{2n}+n+3\equiv 0$ لي أن $a^{2n}+n+3\equiv 0$ لي أن $a^{2n}+n+3\equiv 0$ لي أن $a^{2n}+n+3\equiv 0$ يكافئ $a^{2n}+n+3\equiv 0$

و k عدد طبیعی n=13k+9

التمرين الثاني :

 $u_0 + u_1 = 30$; $u_0 \times u_2 = 576$ و أساسها q و أساسها موجبة تماما حدها الأول ما الأول و أساسها المتتالية u_0

إثبات أن $u_1^2 = 576$ باستخدام الوسط الهندسي $u_1^2 = 576$; $u_0 \times u_2 = u_1^2$; $u_0 \times u_2 = 576$ إثبات أن $u_1 = 24$ باستخدام الوسط الهندسي $u_1 = \sqrt{576} = 24$

 $u_0 = 6$ و منه $u_0 + 24 = 30$ بالتعويض في $u_0 + u_1 = 30$ و منه بالتعويض

 $q = \frac{u_1}{u_0} = \frac{24}{6} = 4$ لدينا q = 4 هو q = 4 إثبات أن الأساس هو (2

 $u_n = 6 \times 4^n$ و منه $u_n = u_0.q^n$ و منه عبارة الحد العام هي

ن الدينا من أجل كل عدد طبيعي $u_{n+1} = 6 \times 4^{n+1}$ و منه $u_{n+1} = 6 \times 4^{n+1}$ أي أن $u_{n+1} - u_n = 6 \times 4^{n+1} - 6 \times 4^n$ و منه $u_{n+1} - u_n = 6 \times 4^n (4-1) = 18 \times 4^n$

اتجاه تغير المتتالية بما أن الفرق السابق عدد موجب إذن المتتالية متزايدة .

 $4^4 = 256$ حساب (4

التحقق أن 1536 حد من حدود هذه المتتالية لدينا $4 \times 6 = 6 \times 1$ أي أن $4 \times 6 = 1536$ و هو الحد الخامس .

 $. S_n = u_1 \left(\frac{q^n - 1}{q - 1} \right) = 24 \left(\frac{4^n - 1}{4 - 1} \right) = 8 \left(4^n - 1 \right) : S_n \text{ coult}$ (5

التمرين الثالث:

$$f(x) = 3 - \frac{a}{x+1}$$

$$a=0$$
 يعني العدد الحقيقي $a=0$ عني يشمل $a=0$ النقطة $a=0$ أي أن $a=0$ أي أن $a=0$ يكافئ $a=0$ يكافئ $a=0$ عني العدد الحقيقي $a=0$ منه $a=3$

a=3 نضع

:
$$f(x) = \frac{3x}{x+1}$$
 فإن $-\infty; -1$ [\cup] $-1; +\infty$ [من $-1; +\infty$] عدد حقیقی $-1; +\infty$ [نام من أجل كل عدد حقیقی $-1; +\infty$ [نام كل عدد عند علی كل عدد حقیقی از نام كل عدد علی كل

$$f(x) = \frac{3(x+1)}{x+1} - \frac{3}{x+1}$$
 بتوحید المقامات نجد حقیقی $f(x) = 3 - \frac{3}{x+1}$: $]-\infty; -1$ [U] $-1; +\infty$ [برای عدد حقیقی $[x]$ من $[x]$

منه $f(x) = \frac{3x+3-3}{x+1} = \frac{3x}{x+1}$ منه

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \left(\frac{-3}{x+1} \right) = +\infty \quad \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{3x}{x} \right) = 3 \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3x}{x} \right) = 3 \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3x}{x} \right) = 3 \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3x}{x} \right) = 3 \quad \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{3x}{x} \right) = 3 \quad \lim_{x \to +\infty} \left($$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \left(\frac{-3}{x+1} \right) = -\infty$$

.
$$\left(C_{f}\right)$$
 אונים ואשון וואסיבים וואסיבים $x=-1$; $y=3$ וואסיבים וואסיבים ישרים וואסיבים וואסיבים

:
$$]-\infty;-1$$
 [U] $-1;+\infty[$ من أجل كل عدد حقيقي x من أجل كل عدد عقيقي (3

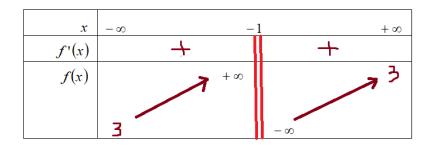
$$f'(x) = \frac{3}{(x+1)^2}$$
 و منه $f(x) = 3 - \frac{3}{x+1}$ الطريقة الأولى

$$f'(x) = \frac{3 \times 1 - 0 \times 1}{(x+1)^2} = \frac{3}{(x+1)^2}$$
 و منه $f(x) = \frac{3x}{x+1}$: أو بطريقة ثالثة $f'(x) = \frac{3(x+1) - 3x}{(x+1)^2} = \frac{3x + 3 - 3x}{(x+1)^2} = \frac{3}{(x+1)^2}$

$$f'(x) = \frac{3(x+1)-3x}{(x+1)^2} = \frac{3x+3-3x}{(x+1)^2} = \frac{3}{(x+1)^2}$$
 : أو بطريقة ثالثة

-1ب المشتقة f موجّبة على المجالين $]\infty+;+\infty$ و منه الدالة f متزايدة على المجالين السابقين

جدول تغبراتها



b لدينا (Δ): y = 3x + b لدينا (4

لدينا
$$x_0 = -2$$
 يعني أن (Δ) مماس للمنحنى (C_f) في النقطة ذات الفاصلة $x_0 = -2$ أن $f(-2) = \frac{3(-2)}{-2+1} = 6$ و منه

$$\left(C_{f}
ight)$$
 رسم المنحنى (5

