الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: آداب وفلسفة ، لغات أجنبية

اختبار في مادة: الرياضيات المدة: 20 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (06 نقاط)

c=1954 و b=1437 ، a=2016 و a=b و b , a=b و نعتبر الأعداد الطبيعية

- .5 عيّن باقي القسمة الإقليدية لكل من الأعداد b ، a و على (1
- .5 على a imes b imes c ، a+b+c : استنتج باقي القسمة الإقليدية لكل من الأعداد (2
 - $.b^{4n}\equiv 1$ [5] ، n عدد طبیعي أنه من أجل كل عدد (3
 - .5 يقبل القسمة على $b^{2016}-1$ يقبل القسمة على .5
 - .c = -1[5] أ) تحقّق أنّ: (4
 - . $c^{1438} + c^{2017} \equiv 0$ [5] :نب (ب

التمرين الثاني: (06 نقاط)

 $u_1=320$ و $u_1=20$ حيث $\mathbb N$ متتالية هندسية حدودها موجبة تماما ، معرّفة على $u_1=20$

- بيّن أنّ أساس المتتالية (u_n) هو 4 وحدها الأول هو 5. (1
- كتب عبارة الحد العام للمتتالية (u_n) بدلالة n ثم استنتج قيمة حدها السابع.
- $S = u_0 + u_1 + \dots + u_n$ شيء S حيث n المجموع n المجموع (أ (3 $S' = u_0 + u_1 + \dots + u_6$ حيث $S' = u_0 + u_1 + \dots + u_6$ استنتج قيمة المجموع n حيث n حيث n حيث n

التمرين الثالث: (08 نقاط)

 $f(x) = \frac{4x-3}{2x-2}$ نعتبر الدالة العددية f المعرّفة على $\mathbb{R} - \{1\}$ كما يلي:

 $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس المستوي المستوي

- $f(x) = 2 + \frac{1}{2x 2}$ ، 1 نحقّق أنّ: من أجل كل عدد حقيقي x يختلف عن 1 (1
- $\lim_{x \to -1} f(x)$ و $\lim_{x \to -1} f(x)$ ، $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to -\infty} f(x)$ و (2) احسب النهايات التالية $\lim_{x \to -1} f(x)$ ، $\lim_{x \to -\infty} f(x)$ ، $\lim_{x \to -\infty} f(x)$ استنتج معادلتي المستقيمين المقاربين للمنحني (C_f)
 - $f'(x) = \frac{-2}{(2x-2)^2}$ ،1 بيّن أنّ: من أجل كل عدد حقيقي x يختلف عن x عدد حقيقي (3
 - \mathbf{p} استنتج اتجاه تغیر الداله f ثم شکل جدول تغیراتها.
 - 4 جد إحداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
 - . 2 اكتب معادلة المماس (Δ) للمنحنى (C_f) عند النقطة ذات الفاصلة (5
 - (C_f) و (Δ) ارسم (Δ

الموضوع الثانى

التمرين الأول: (06 نقاط)

 $u_3 + u_7 = 50$ و $u_0 = -5$ و يا بحدّها الأوّل $u_0 = -5$ و المجموعة $u_0 = -5$

- (u_n) عيّن الأساس المتتالية (1
- $u_n = 6n 5$ ، n بیّن أنّ: من أجل كل عدد طبیعي (2
- (3) اثبت أنّ العدد 2017 حد من حدود المتتالية (u_n) ، ماهي رتبته
- $S=u_0+u_1+\cdots\cdots+u_n$ حيث S حيث n المجموع (4

التمرين الثاني: (06 نقاط)

c=2017 و b=1966 ، $a\equiv -5$ و b=1966 و b=1966 و b=1966 و

- من باقي القسمة الإقليدية لكل من الاعداد a و b ، a على c و d على d
 - .b = -1[7] تحقّق أنّ: (2
 - .7 يقبل القسمة على $b^{2017} + 3 \times c^{1438} 2$ يقبل القسمة على (3
- . $2^{3k+2} \equiv 4$ و $2^{3k+1} \equiv 2$ و $2^{3k+1} \equiv 2$ ثم استنتج أن $2^{3k} \equiv 1$ و $2^{3k+2} \equiv 4$ و $2^{3k+2} \equiv 4$ و $2^{3k+2} \equiv 4$
 - عيّن قيم العدد الطبيعي n حتى يكون 2^n+3 قابلا للقسمة على 7.

التمرين الثالث: (08 نقاط)

$$f(x) = \frac{1}{3}x^3 - 4x$$
 : بعتبر الدالة العددية f المعرّفة على

- $(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)
 - . $\lim_{x\to +\infty} f(x)$ ، $\lim_{x\to -\infty} f(x)$: احسب النهايتين التاليتين (1
 - - . f استنتج اتجاه تغیّر الداله $oldsymbol{+}$
 - f شكّل جدول تغيرات الدالة (3
- . المعادلة f(x)=0 ، استنتج احداثيات نقط تقاطع (C_f) مع حاملي محوري الإحداثيات.
 - . يقبل نقطة انعطاف هي مبدأ المعلم (C_f) بيّن أن
 - .0 اكتب معادلة المماس (T) للمنحني المنحني النقطة ذات الفاصلة (C_f) اكتب معادلة المماس
 - (C_f) ارسم (T) ارسم (T

انتهى الموضوع الثاني