

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

دورة: 2022

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

b=124 و a=2022 و معددان طبیعیان حیث a=a

ميّن باقى القسمة الإقليدية لكلّ من العددين a و d على d

ما أدرس حسب قيم العدد الطبيعي n بواقى القسمة الإقليدية للعدد 5^n على 2

7 يقبل القسمة على $a^a + b^b + 4$ بيّن أنّ العدد

 $A_n = 2021^n + 2022^n + 2023^n + 2024^n$ ، n عدد طبیعی (4

7 مضاعفا للعدد A_n+1 مضاعفا للعدد $A_n=1+5^n+6^n$ مضاعفا للعدد $A_n=1+5^n+6^n$

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كلّ حالة مما يلي:

مضاعف للعدد 3 من أجل كلّ عدد طبيعي $n(n^2-1)$ ، n

 $]0;+\infty[$ على $y''=2+\frac{1}{x}$ الدالة العددية $x\mapsto x^2+2x+x\ln x$ على الدالة العددية (2

 $f(x)=x+(x-2)e^x$: بالمستقيم ذو المعادلة y=x+e مماس لمنحنى الدالة y=x+e المستقيم ذو المعادلة والمعادلة المعرّفة على المعرّفة على

 $v_n = \ln \frac{n e^n}{n+1}$:ب \mathbb{N}^* بنا المتتالية العددية المعرفة على (u_n) (4

 $S_n = \frac{n(n+1)}{2} - \ln(n+1)$: هي $S_n = v_1 + v_2 + \dots + v_n$ عبارة المجموع $S_n = v_1 + v_2 + \dots + v_n$

التمرين الثالث: (05 نقاط)

 $u_1=2$: كما يلي كما المعتاليتان العدديتان المعرّفتان على المتتاليتان العدديتان المعرّفتان و (v_n)

 $v_n = n \ u_n + 2$ و من أجل كلّ عدد طبيعي غير معدوم ، n ، n معدوم غير معدوم

 u_3 و u_2 (1

 $\frac{1}{2}$ برهن أنّ المتتالية (v_n) هندسية أساسها (2

n بدلالة u_n بدلالة n ثم استنتج u_n بدلالة

اختبار في مادة: الرياضيات. الشعبة: تقني رياضي. بكالوريا 2022

$$S_n = v_1 + v_2 + \dots + v_n$$
 أحسب، بدلالة n ، المجموع S_n حيث ميث (3

$$w_n = \frac{4n}{v_n - nu_n}$$
 نضع من أجل كلّ عدد طبيعي n غير معدوم، (4

$$S_n' = w_1 + w_2 + \dots + w_n$$
 أحسب، بدلالة n ، المجموع S_n' حيث S_n'

التمربن الرابع: (07 نقاط)

$$f(x) = 1 + (x-1) \ln x$$
 : ب $]0;+\infty$ لله المعرّفة على المجال f

$$\|\vec{i}\| = 2\,cm$$
 حيث $(O,\vec{i};\vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f)

$$\ln x$$
 و $\frac{x-1}{x}$ من $\frac{x-1}{x}$ الموجب تماما إشارة كلٍّ من العدد الحقيقي x الموجب الموجب الموجب أدرس حسب قيم العدد الحقيقي x

$$\frac{x-1}{x}$$
 + $\ln x$ أستنتج حسب قيم العدد الحقيقي x الموجب تماما إشارة

$$\lim_{x \to 0} f(x) = \lim_{x \to +\infty} f(x) \quad \text{(2)}$$

- أدرس اتّجاه تغيّر الدّالة f ثمّ شكّل جدول تغيراتها.

$$h(x)=x-2+\ln x$$
 : كما يلي $h(x)=x-2+\ln x$ الدّالة العددية المعرّفة على $h(x)=x-2+\ln x$

 $[0;+\infty]$ متزايدة تماما على $[0;+\infty]$

 $\ln(\alpha) = 2 - \alpha$ ثم بيّن أنّ المعادلة h(x) = 0 تقبل حلاّ وحيدا α حيث α حيث h(x) = 0 ثم بيّن أنّ

$$lpha$$
 معادلة لـ (C_f) مماس (T) معادلة لـ $y=rac{-lpha^2+3lpha-1}{lpha}$ معادلة لـ ج- بيّن أنّ

$$(\frac{-\alpha^2 + 3\alpha - 1}{\alpha} \simeq 0.8)$$
 فشئ (C_f) و (C_f) على (C_f) على (4

$$f(x)-x=(x-1)(-1+\ln x)$$
 أ- بيّن أنّه من أجل كلّ عدد حقيقي x موجب تماما، (5

f(x)-x أدرس حسب قيم العدد الحقيقي x الموجب تماما إشارة

$$K(x) = -\frac{3}{4}x^2 + 2x + \left(\frac{1}{2}x^2 - x\right) \ln x$$
 :ب (6)

K'(x) = f(x) - x موجب تماما عدد حقیقی x عدد حقیقی الله من أجل كلّ عدد حقیقی

x=e و x=1 ، y=x: أحسب مساحة حيز المستوي المحدد بـ (C_f) والمستقيمات التي معادلاتها

السّابق. وي المعلم السياني في المعرّفة على
$$]-2;+\infty$$
 الدّالة المعرّفة على $]-2;+\infty$ الدّالة المعرّفة على g

$$g(x) = f(x+2) - 1$$
 ، $]-2;+\infty[$ من أجل كلّ عدد حقيقي x من أجّل كلّ عدد حقيقي

$$\left((C_g)$$
 استنتج أنّ (C_g) صورة (C_f) بانسحاب يطلب تعيين شعاعه. (C_g) صورة الشاء السحاب يطلب يطلب المستنتج

الموضوع الثانى

التمرين الأول: (04 نقاط)

c=9n+2 ، b=n+1 ، a=5n+2 : n نضع من أجل كلّ عدد طبيعي $d'=p\gcd(b;c)$ ، $d=p\gcd(a;b)$ و

- $p\gcd(a;b;c)$ عيّن القيم الممكنة لكلّ من d' و d' و d'
 - a العدد الطبيعي محتى يكون العدد b عيّن قيم العدد (2
- (2) نعتبر المعادلة: $(E) \cdots (E) \cdots (E)$ حيث x و y عددان صحيحان. (E) بيّن أنّه إذا كانت الثنائية (x;y) حلا للمعادلة (E) فإنّ (E) ثم حل المعادلة المعادلة عندان الثنائية والمعادلة المعادلة الم
 - xy < 279 عين الثنائيات (x;y) حلول المعادلة (E) عين الثنائيات (4

التمرين الثاني: (04 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كلّ حالة من الحالات التالية مع التبرير.

$$S = \{e^{-2}; e^{3}\}$$
 (\Rightarrow $S = \{-2; 3\}$ (\Rightarrow $S = \{e^{3}\}$ (\Rightarrow

5 (**ج**

- $oldsymbol{2}$ باقي القسمة الإقليدية للعدد 9^{2023} على 7 هو: أ) 2
 - : $\int_0^{\ln 4043} \frac{1}{1+e^{-x}} dx$ يساوي (3)

 $F(x)=(x+2)\sqrt{x}$: الدالة العددية المعرّفة على]0 ; $+\infty[$ على المعرّفة على F (4 : عبارة الدالة f على المجال F دالة أصلية للدالة f على المجال F

$$f(x) = \frac{2x+3}{2x}\sqrt{x}$$
 (\Rightarrow $f(x) = \frac{3x+2}{2x}\sqrt{x}$ (\Rightarrow $f(x) = \frac{3x+2}{2x}$ (\Rightarrow

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{1}{2} \left(u_n - 2 \right)$ ، n عدد طبيعي ، n عدد طبيعي $u_0 = 0$ حيث $u_0 = 0$ حيث $u_0 = 0$

- $u_n>-2$ ، n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (1
- . أدرس اتجاه تغيّر المتتالية (u_n) ثم إستنتج أنّ (u_n) متقاربة (u_n)
- $v_n = \frac{1}{u_{n+1} u_n}$ يلي كما يلي المتتالية العددية المعرّفة على \mathbb{N} المتتالية العددية المعرّفة على (v_n)

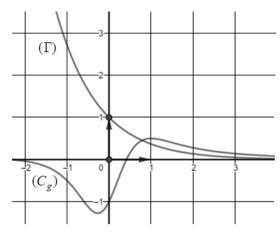
n برهن أنّ المتتالية (v_n) هندسية أساسها 2 ثم أكتب أ

اختبار في مادة: الرياضيات. الشعبة: تقنى رياضى. بكالوريا 2022

$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$
 حيث S_n المجموع S_n المجموع المجموع المجموع أحسب، بدلالة

$$\lim_{n\to +\infty}u_n$$
 ثم احسب ثم $u_n=2\left(\frac{1}{2^n}-1\right)$ ، n عدد طبیعي عدد طبیعي أنّه من أجل كلّ عدد طبیعي (4

$$S_n' = u_0 + u_1 + \dots + u_n$$
 حيث S_n' المجموع S_n' المجموع S_n'



التمرين الرابع: (07 نقاط)

- $\left(O; \vec{i}, \vec{j}
 ight)$ المستوي منسوب إلى المعلم المتعامد المتجانس (m I
 - التمثيل ($C_{_g}$) التمثيل البياني للدالة e^{-x} : الدالة (Γ)

$$g(x) = \frac{x^2 + 2x - 1}{(x^2 + 1)^2}$$
 ب بالدالة g المعرفة على g المعرفة على

 $\left(\Gamma
ight)$ و $\left(C_{g}
ight)$ فاصلة نقطة تقاطع lpha

(كما هو مبيّن في الشكل المقابل)

- $g(x) e^{-x}$ بقراءة بيانية، حدّد حسب قيم العدد الحقيقى x إشارة بيانية، (1
 - $0,7 < \alpha < 0.8$ تحقّق حسابيا أنّ (2

. ستجامد متعامد في معلم البياني المعرّفة على \mathbb{R} بالدالة العددية المعرّفة على \mathbb{R} بالدالة العددية المعرّفة على $f\left(\Pi\right)$

- . النتيجة بيانيا أحسب $\lim_{x \to +\infty} f(x)$ أحسب أ $\lim_{x \to -\infty} f(x)$ وفسّر النتيجة بيانيا (1
- $f'(x) = g(x) e^{-x}$ ، x عدد حقیقی عدد کلّ عدد (2

- إستنتج اتجاه تغير الدالة f وشكل جدول تغيراتها.

انتيجة بيانيا. $\lim_{x \to -\infty} \left[f(x) - e^{-x} \right]$ وفسّر النتيجة بيانيا. (3

 (Γ) و (C_f) أدرس الوضعية النسبية للمنحنيين

0 أ- أكتب معادلة لـ T) مماس النقطة ذات الفاصلة (4

$$(f(\alpha) \simeq -0.6)$$
 و (C_f) و (Γ) و (Γ)

f(x)-m=0 عدد وإشارة حلول المعادلة ، m عدد وإشارة حلول المعادلة ، -

 $\frac{1}{2}x+1 \le \frac{1}{x^2+1} \le \frac{5}{4(1-x)}$: [-1;0] علما أنّه من أجل كلّ عدد حقيقي x من المجال (5

$$I = \int_{-1}^{0} \frac{dx}{x^2 + 1}$$
: عين حصرا للعدد العدد العدد

ب- أحسب J حيث : $J=\int_{-1}^{0}\frac{x}{x^{2}+1}dx$ ثم استنتج حصراً لـ A ، مساحة الحيز المستوي المحدّد

x=0 و x=-1 و المستقيمين اللذين معادلتا هما $\left(C_{f}
ight)$ و $\left(\Gamma
ight)$

انتهى الموضوع الثاني