الإجابة المقترحة وسلم التنقيط

دورة: ماي 2016

امتحان بكالوريا تجريبية

المادة: علوم فيزيائية

الشعبة: رياضيات ، تقني رياضي

العلامة		1) EN NY
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		التمرين الأول:
	0,25	: تحدید A و Z لنواة الکزینون المتولدة -1
02		A=N+Z=54+77=131 و $Z=54$: (N;Z) لدينا من المخطط
03	0,25	اذن النواة المتولدة هي: $Xe^{rac{131}{54}}$
		$eta^-:$ معادلة التفكك $e^-: eta^{-131}_{54} o rac{131}{54} o rac{131}{54}$ ، نوع النشاط الاشعاعي هو
	0,5	2-أ- حساب قيمة 3:
		$\lambda = 8.1$ <i>jau</i> s = 8.1*24*3600=699840S . وحيث: $\lambda = \frac{\ln 2}{\lambda}$: لدينا
		$t_{1/2}$
	0,25	$\lambda = \frac{0.693}{699840} = 9.9 \times 10^{-7} \text{s}^{-1}$
	0,25	$N_{0}=n.N_{A}=rac{m_{0}}{M}.N_{A}$ ب- لدینا
		$N_0 = \frac{8.10^{-9}}{13.1} \times 6,02.10^{23} = 3,676.10^{13} noyaux$:
	0,25	131
	,	استنتاج A_0 النشاط الاشعاعي الابتدائي:
		$A_0 = \lambda.N_0$: لدينا
		$A_0 = 9,9.10^{-7} \times 3,676.10^{13} = 3,64.10^7 Bq$ ت.ع
		$A = 2,79.10^6 Bq$ بعد مرور شهر:
	0,5	ادینا: $A = A_0 e^{-\lambda .t}$ وحیث:
	,	$\begin{cases} t = 1 mois = 30 \times 24 \times 3600 = 2592000s \\ \lambda . t = 9, 9.10^{-7} \times 2592000 = 2,57 \end{cases}$
	0,25	$A = 3,64.10^7 e^{-2,57} = 2,79.10^6 Bq$ إذن:
		استنتاج كتلة اليود المتبقي:
	0,25	$m=rac{A.M}{\lambda.N_A}$ ومنه: $A=\lambda.N=\lambda imesrac{m}{M}.N_A$: لدينا
		ت.ع: $g: 50.10^{-10} g$ الكمية أصبحت $m = \frac{2,79.10^6 \times 131}{9,9.10^{-7} \times 6,02.10^{23}} = 6,13.10^{-10} g$
	0,25	تقریبا غیر مشعة بعد مرور شهر).
	J,25	3- تناول أقراص اليود 127 يؤدي إلى إشباع الغدة الدرقية باليود غير الاشعاعي وبذلك تفادي

		إمتصاص اليود 131 إشعاعي النشاط.
		التمرين الثاني: 1- إثبات المعادلة التفاضلية التي يحققها التوتر:
	0,25	$u_b^{} + u_R^{} = E_{}$ نون جمع التوترات : لدينا حسب قانون جمع
	0,25	$i=rac{u_R}{R}$ و منه $u_R=Ri$: وحسب قانون أوم
3,5		(u)
		$u_b = Lrac{d\left(rac{u_R}{R} ight)}{dt} + r\left(rac{u_R}{R} ight)$: ولدينا أيضا $u_b = Lrac{di}{dt} + ri$
		$=\frac{L}{R}\cdot\frac{du_R}{dt}+\frac{r}{R}\cdot u_R$ ومنه:
	0,25	$\frac{L}{R}.\frac{du_R}{dt} + \frac{r}{R}.u_R + u_R = E$: بالتعويض في المعادلة (*) نجد
		$\frac{L}{R} \cdot \frac{du_R}{dt} + \left(\frac{R+r}{R}\right) \cdot u_R - E = 0 $: غي
	0,25	$\displaystyle rac{du_R}{dt} + rac{(R+r)}{L}.u_R - rac{E.R}{L} = 0$: نجد L نجد L وبضرب طرفي المعادلة في R والقسمة على L
		λ و λ و λ و λ ایجاد عبارة کل من الثابتین λ و λ
	0,25	$u_R=U_0(1-e^{-\lambda t})$: على المعادلة التفاضلية السابقة هو $\frac{du_R}{dt}+\frac{(R+r)}{L}.u_R-\frac{E.R}{L}=0$ المعادلة التفاضلية السابقة هو على المعادلة ويكون المشتق: $\frac{du_R}{dt}=\lambda.U_0e^{-\lambda t}$ نجد:
		$dt \qquad L \qquad L \qquad L \qquad dt \qquad \lambda U_0 e^{-\lambda t} + \frac{(R+r)}{I} U_0 (1-e^{-\lambda t}) - \frac{E.R}{I} = 0$
	0,25	
		$\left[\underbrace{\lambda - \underbrace{\left(R + r\right)}_{=0}}\right] . U_0 e^{-\lambda t} + \underbrace{\frac{\left(R + r\right)}{L} . U_0 - \underbrace{\frac{E.R}{L}}_{=0}} = 0$
		حتى تتحقق المعادلة يجب أن يكون :
		$\begin{cases} \lambda - \frac{(R+r)}{L} = 0\\ \frac{(R+r)}{L} \cdot U_0 - \frac{E \cdot R}{L} = 0 \end{cases}$
	0,25	$\lambda = \frac{R+r}{L}$ ومنه نستنتج أن : $U_0 = \frac{E.R}{R}$
		R+r عبارة المقاومة r
_	0,25	$U_{\scriptscriptstyle R}$ = R $I_{\scriptscriptstyle 0}$ = $U_{\scriptscriptstyle 0}$: وأيضا $u_{\scriptscriptstyle R}$ = R . E

	0,25	$r = \frac{E}{I_0} - R = \frac{E}{I_0} - \frac{U_0}{I_0}$: يُذِن $I_0 = \frac{E}{R+r}$
		$r = \frac{E - U_0}{I_0}$ وبالتالي :
		I_0 وبالتالي: وبالتالي
	0,25	<u>تطبيق عددي :</u>
	-, -	$U_0 = 7.6V$ ؛ $E = 10V$ من البيان نجد
	0,25	$r = \frac{10 - 7.6}{0.1} = 24\Omega$
		$:L$ و U_0 و U_0 و U_0 بدلالة U_0 بدلالة U_0 بدلالة U_0 بدلالة U_0 بدلالة U_0 بدلالة U_0
		: عند اللحظة $t=0$ ، تكتب المعادلة التفاضلية السابقة بالشكل
		$\left(\frac{du_R}{dt}\right)_0 + \frac{(R+r)}{L} \cdot \underbrace{u_R(0)}_0 - \frac{E.R}{L} = 0$
	0,25	$\left[\left(rac{du_R}{dt} ight)_0 = rac{U_0.E}{I.L} ight]$: يا $R = rac{U_0}{I_0}$ يا خن $\left(rac{du_R}{dt} ight)_0 = rac{E.R}{L}$ يا خن $\left(rac{du_R}{dt} ight)_0 = rac{E.R}{L}$
		L استنتاج قیمهٔ L :
		$t=0$ يمثل المقدار $\left(rac{du_R}{dt} ight)_0$ ميل المنحنى عند اللحظة
		$\left(\frac{du_R}{dt}\right)_0 = \frac{4}{2,5.10^{-3}} = 1,6.10^3 V/s$ وقیمته هي:
	0,25	$L = rac{U_0.E}{I_0.\left(rac{du_R}{dt} ight)_0}$: المقدار من العلاقة السابقة للمقدار $\left(rac{du_R}{dt} ight)_0$ ، نستنتج عبارة
	0,25	$L = \frac{7.6 \times 10}{0.1 \times 1,6.10^3} = 0.48H$: بالتعویض العددي نجد
		التمرين الثالث:
		ABC على المسار: ABC على المسار:
		مخطط السرعة عبارة عن مستقيم لا يمر من المبدأ (دالة تألفية) معادلته من الشكل:
	0,25	. يمثل ميل المستقيم ، $v=a.t+v_0(1)$
		. باشتقاق المعادلة (1) نجد: $a=cte$ ومنه : تسارع الحركة ثابت والمسار مستقيم
3,75	0,25	إذن: حركة (S) مستقيمة متغيرة بانتظام.
		ب. قيمة a تسارع (S) وسرعته الإبتدائية:
	0,25	$\begin{cases} a = \frac{4-1}{6-0} = 0,5 \text{m.s}^{-2} \\ \text{at (4.01)} \end{cases}$
	0,25	$\left\{ egin{array}{ll} a = 0, 5m.s \ 6 = 0 \end{array} ight. : (14) ight.$ من البيان (الشكل 4): $v_0 = 1m.s^{-1}$

```
AB ج- طول المسار
             \left|AB = \frac{v^2 - v_0^2}{2a}\right|: نجد x = AB، حيث x = AB نجد باستخدام العلاقة المستقلة عن الزمن
                                                                           AB = \frac{4^2 - 1^2}{2 \times 0.5} = 0,75m :ق.ع
0,25
                                                                                     : عبارة F شدة قوة الجر-2
0.25
                                                                \sum \vec{F}_{ext} = m.\vec{a}: بتطبیق القانون الثاني لنیوتن
                                                               \vec{P} + \vec{R} + \vec{F} + \vec{f} = m.\vec{a}
0,25
                                     F_r - f = m.a....(1) : (Ox) بإسقاط العلاقة الشعاعية وفق المحور
                  F\cos\beta-f=m.a....(1) نجد: (1) نجد F_x=F\cos\beta نجد
                                                      F = \frac{m.a + f}{\cos \beta}
                                                                                                              إذن:
                                                     F = \frac{0.4 \times 0.5 + 0.4}{0.5} = 1.2N
0,25
                                                                                              : F حساب قیمة
                                                                        r حساب r نصف قطر المسار الدائري r
0,25
              بتطبيق مبدأ إنحفاظ الطاقة على الجملة (جسم (S) + أرض) ، وباعتبار المستوي المار بالنقطة
                                                                                      : E_{nn} مرجعا لحساب B
                      E_{pp}(B) = 0 : وحيث E_{c}(C) + E_{pp}(C) = E_{c}(B) + E_{pp}(B)
                                                                  E_{nn}(\mathbf{C}) = E_c(B) - E_c(\mathbf{C})
0,25
                               h_c = \frac{v_B^2 - v_C^2}{2\alpha} ومنه: mgh_c = \frac{1}{2}mv_B^2 - \frac{1}{2}mv_C^2
                                                                                                             أي:
                               h_c = \frac{4^2 - 2^2}{2 \times 10} = 0,6m ت.ع:
                r = \frac{\overline{h_C}}{1 - \cos \alpha} : من الشكل (3) ، نجد: \cos \alpha = \frac{OB - h_C}{OC} \Rightarrow \cos \alpha = \frac{r - h_C}{r} : من الشكل
0,25
                                                                              r = \frac{0.6}{1 - 0.87} = 4.6m:
0,25
                                                             : C عادلة مسار (S) بعد مغادرته النقطة -4
                                           ec{P}=m.ec{a}: بتطبیق القانون الثاني لنیوتن بنیوتن : \sum ec{F}_{ext}=m.ec{a}: بتطبیق القانون الثانی لنیوتن
                                                         بإسقاط العلاقة الشعاعية وفق محاور المعلم (Cxy):
                                                                                             مركبات التسارع:
```

		$\left\{ egin{aligned} v_x = v_{Cx} = v_C \cos \alpha \ v_y = -g.t + v_C \sin \alpha \end{aligned} ight.$ بمكاملة مركبات التسارع ، نجد مركبات السرعة:					
		بمكاملة مركبات السرعة ، نجد مركبات شعاع الموضع:					
		$\begin{cases} x = v_C \cos(\alpha).t(1) \\ y = -g.t^2 + v_C \sin(\alpha).t + h_C(2) \end{cases}$					
	0,25						
		من (1) نجد: $t = \frac{x}{v_C \cos(\alpha)}$ وبالتعویض في $t = \frac{x}{v_C \cos(\alpha)}$					
		$y = -\frac{g}{v_C^2 \cos^2 \alpha} . x^2 + \tan(\alpha) . x + h_C$					
	0,25	$y = -5.x^2 + 1,74x + 0,6$::3					
	0,20	: C المسافة الأفقية بين النقطة D والشاقول المار بالنقطة -2					
		عند النقطة D يكون: $y=0$ ، وبالتالي:					
		$-5.x^2 + 1,74x + 0,6 = 0 \Rightarrow \begin{cases} x_1 = -0.56m($					
	0,25	$x_D = 0.21m$: ومنه					
ع: (03 نقاط)							
04	0,25	$M = C.V.M$: ومنه $C = \frac{n}{V} = \frac{m}{M.V}$: الدينا					
	0,25	$m=10^{-2} imes100.10^{-3} imes46$ بالتعويض العددي ، نجد:					
		=46mg					
	0,5	ب- جدول تقدم التفاعل $HCOOH(aa) + H_2O(l) = HCOO^-(aa) + H_2O^+(aa)$ المعادلة					
		كميات المادة بالمــول الحالة					
		0 الابتدائية 0 C.V					
		x $C.V-x$ الانتقالية x x x					
		النهائية $CV-x_f$ x_f x_f x_f					
		. بما أن الماء مستعمل بزيادة ، فإن $HCOOH(aq)$ هو المتفاعل المحد \checkmark					
	0,25	$x_{ m max} = C.V$ ومنه: $C.V - x_{ m max} = 0$					

,		
		$oldsymbol{ec{arphi}}$ تكتب عبارة الناقلية النوعية للمحلول بالشكل:
		: ومن خلال جدول التقدم $\sigma=\lambda_{H_3O^+}.ig[H_3O^+ig]_f+\lambda_{HCOO^-}.ig[HCOO^-ig]_f$
	0,25	$\left[HCOO^{-}\right]_{f} = \left[H_{3}O^{+}\right]_{f} = \frac{x_{f}}{V}$
		$x_f = rac{\sigma.V}{\left(\lambda_{HCOO^-} + \lambda_{H.O^+} ight)}$: ومنه $\sigma = rac{x_f}{V} \left(\lambda_{HCOO^-} + \lambda_{H_3O^+} ight)$: إذن
	0.25	$\left(\lambda_{HCOO^{-}} + \lambda_{H_{3}O^{+}}\right)$
	0,25	$ au_f = rac{\sigma. V}{C. V. \left(\lambda_{HCOO^-} + \lambda_{H_3O^+} ight)} = rac{\sigma}{C. \left(\lambda_{HCOO^-} + \lambda_{H_3O^+} ight)}$: ين $ au_f = rac{x_f}{x_{ m max}}$: ولدينا
	0,25	$C.V.\left(\lambda_{HCOO^{-}} + \lambda_{H_{3}O^{+}}\right) C.\left(\lambda_{HCOO^{-}} + \lambda_{H_{3}O^{+}}\right) \qquad \qquad x_{\text{max}}$
	-, -	$ au_f = \frac{49.10^{-3}}{10^{-2}.10^3.(5,46+35)\times10^{-3}}$:نجد: بالتعويض العددي ، نجد
		=12,11%
	0,25	$ au_f = rac{x_f}{C.V} = rac{\left[H_3O^+ ight]_f}{C} = rac{10^{-pH}}{C}$:پنا تا باید نینا تا
	0,25	$t_f = \frac{1}{C.V} = \frac{1}{C} = \frac{1}{C}$ $t_f = \frac{1}{C}$
		$-pH = \log(au_f.C)$ ومنه : $ au_f = \log_{pH} = \log_$
		$pH = -\log(12,11 \times 10^{-2}) = 2,9$
	0,25	$\begin{bmatrix} u_{GOO} \end{bmatrix} \begin{bmatrix} u_{O^{+}} \end{bmatrix} \begin{bmatrix} \frac{x_f}{x_f} \end{bmatrix}^2$
		$K_a = \frac{\left[HCOO^-\right]_f \cdot \left[H_3O^+\right]_f}{\left[HCOH\right]_f} = \frac{\left(\frac{x_f}{V}\right)^2}{\left(\frac{C.V - x_f}{V}\right)} = \frac{(\tau_f.C)^2}{C - \tau_f.C} = \frac{{\tau_f}^2.C}{1 - {\tau_f}}$: د- لدينا :
	0,25	$\left(\frac{v_{ij}}{V}\right)^{-1}$
		$K_a = \frac{(0,1211)^2 \cdot 10^{-2}}{1 - 0.1211} = 1,67.10^{-4}$:بالتعويض العددي ، نجد
	0,25	, , , , , , , , , , , , , , , , , , , ,
	0,25	
	0,23	ب. من البيان ، عند نقطة نصف التكافؤ يكون لدينا: $0 = \frac{\left[HCOO^{-}\right]}{\left[HCOOH\right]}$ وبالتالي حجم
		$rac{V_{B.E}}{2} = 5mL \Rightarrow \overline{V_{B.E} = 10mL}$ هيدروكسيد الصوديوم المضاف
	0,25	$C_a.V_a=C_B.V_{B.E}\Rightarrow \overline{iggl[C_B=rac{C_a.V_a}{V_{B.E}}iggl]}$: عند نقطة التكافؤ ، يكون \checkmark
		$C_{B} = \frac{10^{-2} \times 10}{10} = 10^{-2} mol.L^{-1}$: بالتعويض العددي ، نجد
		بالتعويض العددي ، نجد 10 10 10 10

0,25

		ج- من البيان ، عند نقطة التكافؤ يكون لدينا: $\overline{V_{B.E} = 10mL}$ وبالاسقاط على محور التراتيب
		. $\log \frac{\left[HCOO^{-}\right]}{\left[HCOOH\right]} = 4,5$ نجد $\log \frac{\left[HCOO^{-}\right]}{\left[HCOOH\right]}$
		$\mathrm{pH} = \mathrm{pK}_a + \log \frac{\left[HCOO^-\right]}{\left[HCOOH\right]} = -\log K_a + \log \frac{\left[HCOO^-\right]}{\left[HCOOH\right]}$ ومن جهة أخرى:
		$pH = -\log 1,67.10^{-4} + 4,5$
		pH = 8,3
	0,25	
		التمرين الخامس
	0,5	$T_0 = 0.6s$ و $X_m = 4cm$ و $X_m = 4cm$
	0,25	$ec{arphi}=0$ عند $t=0$ یکون $t=0$ عند $t=0$
03		$K=rac{4\pi^2.m}{T_{\circ}^2}$: ومنه $T_0=2\pi\sqrt{rac{m}{K}}$ الدينا
	0,25	
	0,25	$K = \frac{4 \times 10 \times 0,182}{(0,6)^2} = 20N.m^{-1}$: ت.ع
	0,25	$E_C = \frac{1}{2}mv^2 = \frac{1}{2}m.\left(\frac{dx}{dt}\right)^2 \qquad . i-3$
		$=\frac{1}{2}m\left(\frac{2\pi}{T_0}\right)^2X_m^2\sin^2\left(\frac{2\pi}{T_0}.t\right)$
		$=\frac{1}{2}m.\frac{K}{m}X_{m}^{2}\sin^{2}\left(\frac{2\pi}{T_{0}}.t\right)$
	0,25	$E_{C} = \frac{1}{2}K.X_{m}^{2} \left[1 - \cos^{2}\left(\frac{2\pi}{T_{0}}t\right) \right] = \frac{1}{2}K.\left[X_{m}^{2} - X_{m}^{2}\cos^{2}\left(\frac{2\pi}{T_{0}}t\right)\right] $: إذن:
	0,25	$E_{C} = \frac{K}{2}(X_{m}^{2} - x^{2})$ ومنه: $E_{M} = \frac{K}{2}$ للجملة (الجسم $E_{M} = -2$) ومنه: $E_{M} = -2$
	0,5	$E_{m} = E_{C} + E_{PP} + E_{Pe} = \frac{K}{2}(X_{m}^{2} - x^{2}) + 0 + \frac{1}{2}K.x^{2}$ $= \frac{1}{2}K.X_{m}^{2}$

	_			$T_{Pe}=0$ جب، یکون:	في المنحى المو ${\it O}$	G عند مرور
0.25	١	$v_G = 2$	$X_m.\sqrt{\frac{K}{m}}$:	$\frac{1}{2}mv_G^2 = \frac{1}{2}K.X_G$	وبالتالي: وبالتالي	$E_C = E_m$: إذن
0,25				$v_G = 0.04$	$4.\sqrt{\frac{20}{0,182}} = \boxed{0,4}$	$\overline{2m.s^{-1}}$:ت.ع
0,25						
					•	<u>التمرين التجريبي:</u>
				كونة للعمود:	الجملة الكيميائية الم	1-أ. جهة تطور
0,25		$Q_{r,i} = \frac{\left[Cu^{2+}\right]_{i}^{3}}{\left[Al^{3+}\right]_{i}^{2}} = \frac{\left(C_{0}\right)^{3}}{\left(C_{0}\right)^{2}} = C_{0}$				
0,25	لمباشر (جهة	إتجاه ال	ملة تتطور في الا	ومنه فالجر $C_0 = 5.1($	$0^{-2} \gg K = 10^{-20}$	من البيان ، نجد:
			-			تآكل صفيحة الألد
0,25	Θ_{λ}	$4l_{(s)}$ /	$Al_{(aq)}^{3+} / Cu_{(aq)}^{2+}$	ىدروس: ⊕ :دروس	صطلاحي للعمود الم	1-ب. الرمز الاد
0,25					$: \lceil Cu^{2+} \rceil$ يز	2–أ. عبارة التركي
						إنشاء جدول تقدم
0,25	المعادلة		$3Cu_{(aq)}^{2+}$	$+ 2Al_{(s)} =$	$= 3Cu_{(s)} +$	$2Al_{(aq)}^{3+}$
	الحالة	=				
	الابتدائية	0	$C_0.V$	$n_i(Al)$	$n_i(Cu)$	$C_0.V$
	الانتقالية	х	$C_0.V-3x$	$n_i(Al)-2x$	$n_i(Cu) + 3x$	$C_0.V + 2x$
0,25	$\left[Cu^{2+}\right] = \frac{C_0.V - 3x}{V} = C_0 - 3.\frac{x}{V}$ (*): من جدول التقدم					
	$n(e^{-})=6.x$. كمية مادة الإلكترونات المتبادلة بين المرجع و المؤكسد عند لحظة t					
0,25				$r = \frac{n(n)}{n}$	$\frac{(e^{-})}{6}$ (1)	أي:
7,22			A .		U	
0,25	$\Delta t = t - 0$: وحيث $Q = I.\Delta t = n(e^-) imes ext{F}$ لدينا العلاقة: $Q = I.\Delta t = n(e^-) imes ext{F}$					
0,23				$n(e^{-}) = \frac{I.\Delta t}{F} =$	$=\frac{1}{F}.t(2)$	ومنه:
0,25	$\left[Cu^{2+}\right] == C_0 - \frac{I}{2F.V}.t$ نعوض (1) و (2) في العلاقة (*) ، فنحصل على:					
			ارة:	لكهربائي المار في الدا	يمة الشدة I للتيار ا	2-ب. استنتاج قر
	ىل:	ن الشك	لفية) ، معادلته م	يم يمر بالمبدأ (دالة تآ	عبارة عن خط مستة	نلاحظ أن البيان

	$\left(Cu^{2+} \right) = a.t + b$
0,25	$a = \frac{0 - 5.10^{-2}}{5 \times 500 - 0} = -2.10^{-5} mol. L^{1}. s^{-1}$: حيث a ميل المستقيم ، وقيمته من البيان
0,25	$I=-2F.V.a$: ومنه $a=-rac{I}{2F.V}$ بالمطابقة بين عبارتي التركيز
	$I = -2 \times 96500 \times 0.05 \times (-2.10^{-5}) = 0.19 \mathrm{A}$ تطبیق عددي:
	Δm التغير Δm في كتلة صفيحة الألمنيوم عندما يستهلك العمود كليا:
	$\Delta m(Al) = \Delta n(Al).M(Al)(1)$: لدينا
	$\Delta n(Al) = n_{t_c}(Al) - n_i(Al) = (n_i(Al) - 2x) - n_i(Al)$ ومن جدول التقدم: $\Delta n(Al) = -2x$ (2)
	$x = \frac{n(e^{-})}{6} = \frac{I}{6F}.t_{c}(3)$:.أ-2 حسب السؤال 2-أ
0,25	$\Delta m(Al) = -\frac{I}{3F} t_c M(Al)$ نعوض (2) و (3) نغوض (2) نعوض (2) نغوض (2) نغوض (3) نغوض (2) نغوض (3)
	$\Delta m(Al) = -\frac{0.19}{3 \times 96500} \times (5 \times 500) \times 27$ تطبیق عددي: $= -0.0443g$
0,25	= -44,3mg