وزارة التربية الوطنية

مديرية التربية لولاية تلمسان

ثانویة بنی مستار

امتحان بكالوريا تجريبي

اختبار في مادة: الرياضيات المدة: 03 سا و 30 د

الشعبة: الثالثة علوم تجريبية

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأوّل

التمرين الأوّل: (04 نقاط)

يحتوي كيس على 7 كريات منها ثلاث حمراء تحمل الارقام 1.1.2 و اربعة بيضاء تحمل الارقام 3.2.1.1 نسحب من الكيس كرتين على التوالي وبدون ارجاع .

1- شكل شجرة الاحتمالات الموافقة لهذه الوضعية في الحالتين الاتيتين: باعتماد الوان الكرات. باعتماد الارقام المسجلة.

نعتبر الحوادث التالية: A الحصول على كرتين من نفس اللون B . الحصول على كرتين مجموعهما ثلاثة

- ب و $P(A \cap B) = \frac{4}{21}$. هل الحاثتين A و $P(A \cap B) = \frac{4}{21}$. وبين ان P(B) و بين ان $P(A \cap B)$
 - ✓ علما ان الكرتين لهما نفس اللون ما احتمال ان يكون مجموع رقميهما ثلاثة ؟
 - \checkmark -علما ان الكرتين مجموع رقميهما ثلاثة ما احتمال ان يكون لهما نفس اللون ?
- X المتغير العشوائي الذي يرفق بكل عملية السحب مجموع الرقمين المحصل عليهما. عين قيم المتغير العشوائي.
 - عرف قانون الاحتمال واحسب امله الرياضي.

التمرين الثاني: (05 نقاط)

المستوي المركّب المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{u},\vec{v})$. نعتبر النقط C ، B ، A نعتبر النقط c ، c ، c المستوي المركّب المنسوب إلى المعلم المتعامد والمتجانس $z_C=2i$ و $z_B=1+i\left(\sqrt{3}+2\right)$ ، $z_A=\sqrt{3}+i$

$$\left(\frac{z_A}{z_{B-}z_c}\right)^{2018} + \left(\frac{z_{B-}z_c}{z_A}\right)^{2018} = 1$$
: بین أن -1

- بین انه یوجد دوران r یحول Aالی Bومرکزه Cیطلب تعیین زاویته. ما طبیعة المثلث ABC ?
 - مربع. BEDA مربع. B مربع. B مربع. B مربع.
 - $BM^2 + DM^2 = 16$ مجموعة النقط M من المستوي التي تحقق (γ) 4
 - $BM^2-DM^2=0$ مجموعة النقط M من المستوي التي تحقق $\left(\gamma'\right)$
 - بين ان A;B;D;E تنتمى الى (γ) ثم عين طبيعة المجموعة A;B;D;E بين ان
 - (γ') عين طبيعة المجموعة عين
 - عين نقاطع (γ) و (γ) .

التمرين الثالث: (04 نقاط)

$$U_{n+1} = \frac{1}{2} \sqrt{U_n^2 + 3}$$
 : n عدد طبیعي اجل کل عدد $U_0 = 0$: متالیة عددیة معرفة ب

- $0 \le U_n \le 1$: n جرهن بالتراجع انه من اجل کل عدد طبیعي 1
 - بین ان U_n متزایدة تماما ثم استتنج انها متقاریة.
 - $V_n = U_n^2 + \alpha$: عددية معرفة كمايلي عددية عددية $V_n = U_n^2 + \alpha$
 - . $\frac{1}{4}$ عين α حتى تكون V_n متتالية هندسية اساسها α

$\alpha = -1$: نضع

أ- اكتب U_n بدلالة nثم احسب نهايتها.

 $S_n = U_0^2 + U_1^2 + \dots + U_n^2$: حيث S_n المجموع S_n المجموع المجموع المجموع :

التمرين الرابع: (07 نقاط)

. $f(x) = e^x - \frac{1}{x+1}$: يلي الدالة f المعرفة على f على الدالة المعرفة على الدالة الدالة

- . $(o; \overrightarrow{i}; \overrightarrow{j})$ المنحنى البياني للدالة f في المعلم المتعامد و المتجانس ($C_{\!\!f}$)
- 1 أحسب النهايات للدالة f على اطراف مجموعة التعريف \cdot ثم فسر النتائج هندسيا.
 - بين ان الدالة f متزايدة تماما ثم شكل جدول تغيراتها. -
 - ? احسب $\lim_{x\to +\infty} (f(x)-e^x)$ و $\lim_{x\to +\infty} (f(x)-e^x)$ ماذا تستنتج
 - $x\mapsto e^x$ الدرس الوضع النسبي للمنحنى (Cf) و (Cf) الدرس الوضع النسبي المنحنى المنحنى الدالة
 - عدد حقيقي. $y = 2x + \beta$ نعتبر أن المستقيم (T) ذي المعادلة: $y = 2x + \beta$
- عين قيمة العدد eta حتى يكون المستقيم $^{(T)}$ مماسا للمنحنى $^{(C)}$ في النقطة يطلب تعين إحداثياها
 - معلم. (G) و المنحنى (G) و المنحنى (G) و المنحنى (G).
 - . حيث m عدد حقيقي كيفي (H) نعتبر المعادلة (E) نعتبر المعادلة (E) نعتبر المعادلة (E)

عين قيم العدد الحقيقي m بحيث للمعادلة (E) حلان مختلفان في الاشارة.

- 7 معدد حقیقی موجب تماما.
- $x=\lambda$ و x=0 المحددة بالمنحنين (G) و (G) المحددة بالمنحنين المساحة $A(\lambda)$
 - $A(\lambda)=1$ عين λ حتى تكون

الموضوع الثاني

التمرين الأوّل: (04 نقاط)

C(-4;0;-3) B(-2;-6;5) A(1;-2;4) الفضاء منسوب الى معلم متعامد ومتجانس $O(\vec{i},\vec{j},\vec{k})$ نعتبر النقط

- الوحدة. احسب $\overrightarrow{AB}.\overrightarrow{AC}$ ثم استنتج قيس للزاوية \overrightarrow{BAC} مقربة الى الوحدة.
- x-y-z+1=0 هي ABC تحقق من ان المعادلة الديكارتية المستوي
- -3 عين احداثيات النقطة O' المسقط العمودي للنقطة O على المستوي O'
- $\overrightarrow{BH} = \alpha \overrightarrow{BC}$: سمي H المسقط العمودي لO على المستقيم (BC). و α العدد الحقيقي حيث -4

$$\alpha = \frac{\overrightarrow{BO}.\overrightarrow{BC}}{\left\|\overrightarrow{BC}\right\|^2}$$
 بر هن ان -1

. (BC) استتنتج العدد الحقيقي α واحداثيات H ثم المسافة بين O والمستقيم α

التمرين الثاني: (05 نقاط)

في المستوي المركب المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$. نعتبر النقط C, B, A و D لواحقها

.
$$z_D=\overline{z}_C$$
 و $z_C=3+2i\sqrt{3}$ ، $z_B=\overline{z}_A$ ، $z_A=i\sqrt{3}$: على الترتيب z_C,z_B,z_A و و $z_C=3+2i\sqrt{3}$

$$\left(\frac{1+z_A}{2}\right)^{2018} + \left(\frac{1-z_A}{2}\right)^{2018} = -1$$
: بين أن : 1

$$\left(\frac{1+z_A}{2}\right)^n-\left(\frac{1-z_A}{2}\right)^n=0$$
 : عين قيم العدد طبيعي n بحيث : عين عين

2. تحقق أن : $\frac{z_C-z_A}{z_B-z_A}=\frac{z_D-z_B}{z_B-z_C}$ ، ثمّ استنتج أن النقط C,B,A و C,B,A و عناصرها ، ثمّ استنتج أن النقط C,B,A الممنزة .

- 3. عيّن طبيعة الرباعي ABDC ، ثمّ احسب مساحته.
- : حيث: M' التحويل النقطي الذي يرفق بكل نقطة M ذات اللاحقة Z ، النقطة M' ذات اللاحقة f . 4

$$z' = \frac{z_C - z_A}{z_B - z_A} (z - z_A) + z_A$$

- عين طبيعة التحويل f و عناصره المميزة -
- عجموعة النقط M ذات اللاحقة z (حيث $z \neq z_B$ و $z \neq z$)المعرفة بالعلاقة:

$$k \in \Box$$
 مع $a \operatorname{rg}(z^2 + 3) = a \operatorname{rg}(z + i\sqrt{3}) + 2k\pi...(E)$

. (Γ) على الشكل $a \operatorname{rg}(z-z_A) = 2k\pi$ على الشكل (Γ) على الشكل على أنه يمكن كتابة العلاقة للمجموعة (Γ)

التمرين الثالث: (04 نقاط)

: نعتبر المتتالتين (U_n) و (U_n) المعرفتين كمايلي

$$\begin{cases} V_0 = 2 \\ V_{n+1} = \frac{4v_n + 1}{5} \\ v_{n+1} = \frac{4u_n + 1}{5} \\ v_{n+1}$$

 $W_n = V_n - U_n$: نعتبر المتتالية (W_n) المعرفة كمايلي:

برهن انه من اجل عدد طبیعی n: $M_n = \left(\frac{3}{5}\right)^n$; واحسب نهایتها.

 $U_n \prec V_n$: اثبت بالتراجع انه من اجل كل عدد طبيعي انه من اجل 2

. بين ان المتتالية (U_n) متزايدة تماما وان (V_n) متناقصة تماما -3

. استنتج ان U_n و V_n متجاورتان ولهما نفس النهاية -

 $t_n = U_n + V_n$: متتالية معرفة ب -4

. بین ان t_n متتالیة ثابتة ثم استنتج قیمة t_n

التمرين الرابع: (07 نقاط)

 $g(x) = x^2 - 2 + \ln x$: المعرفة على المجال $g(x) = x^2 - 2 + \ln x$: المعرفة على المجال إلى المعرفة على المجال إلى المعرفة على المعرفة على المجال إلى المعرفة على المعرفة على

 \checkmark ادرس تغیرات الدالة g وشکل جدول تغیراتها.

x بين ان المعادلة g(x)=0 تقبل حلا وحيدا α حيث α حيث α حيث α بين ان المعادلة وحيدا معادلة وحيدا محيث α

. $f(x) = x - e + \frac{1 - \ln x}{x}$: ب]0,+∞[بالدالة العددية المعرفة على المجال f(II)

(2cm وحدة الطول). ($o;\vec{i};\vec{j}$) المنحنى البياني للدالة f في المعلم المتعامد و المتجانس (G_f)

ا- بین انه من اجل عدد حقیقی من المجال $g(x) = \frac{g(x)}{r^2}$: $g(x) = \frac{g(x)}{r^2}$ المجال عدد حقیقی من المجال ا

 $f(\alpha)$. $f(\alpha)$ ثم استتنتج حصرا ل (α) = 2 α - e - $\frac{1}{\alpha}$. 1

(Cf) بين ان المستقيم (Δ) الذي معادلته y=x-e عقارب مائل للمنحنى (Δ).

3. بين أن المنحنى (G) يقبل مماسا (T) يوازي المستقيم (Δ)في النقطة يطلب تعين إحداثياها . أكتب المعادلة الديكارتية للمماس (T)

. 5 انشى ((Cf)) و ((Δ)) و نفس المعلم.

 $x = \alpha$ و x = e المساحة المحددة بالمنحنين (Cf) و (Cf) و المستقيمين $A(\alpha)$

 $A(\alpha) = 2(\alpha^2 - 1)^2 cm^2$ بین أن