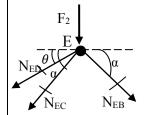
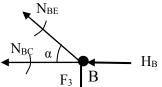

الإجابة النموذجية للبكالوريا التجريبي 2018- قالمة ـ عناصر الإجابة									
العلامة		عناصر الإجابة							
المجموع	مجزأة	A 5 to							
<u>C</u> 3 .	<u>.</u>	الموضوع الأول: F2							
		F_{3} F_{4} F_{5} F_{5} $F_{6,00}$ F_{7} ; $n=5$; $n=5$: التأكد من أن النظام محدد سكونيا $b=7$; $n=5$ النظام محدد سكونيا $b=7$ $a=7$ $b=7$ $a=7$							
		2 Σ FY=0 \Rightarrow V _A =5+20+10= 35 KN \Rightarrow V _A =35KN Σ FX=0 \Rightarrow H _A + F ₁ - H _B =0 \Rightarrow H _A - H _B = - 15KN							
		$AC = \sqrt{3^2 + 3^2} = 4.24 \Rightarrow \begin{cases} \sin \alpha = \frac{3}{4.24} \\ \cos \alpha = \frac{3}{4.24} \end{cases} \begin{cases} \sin \alpha = 0.707 \\ \cos \alpha = 0.707 \end{cases}$ $AD = \sqrt{2^2 + 4^2} = 4.47 \Rightarrow \begin{cases} \sin \beta = \frac{4}{4.47} \\ \cos \beta = \frac{2}{4.47} \end{cases} \begin{cases} \sin \beta = 0.894 \\ \cos \beta = 0.447 \end{cases}$ $DE = \sqrt{4^2 + 2^2} = 4.47 \Rightarrow \begin{cases} \sin \theta = \frac{2}{4.47} \\ \cos \theta = \frac{4}{4.47} \end{cases} \begin{cases} \sin \theta = 0.447 \\ \cos \theta = 0.894 \end{cases}$ $N_{AD} \Rightarrow \Rightarrow The proof of the p$							
		$DE = \sqrt{4^2 + 2^2} = 4.47 \Rightarrow \begin{cases} \sin \theta = \frac{2}{4.47} \\ \cos \theta = \frac{4}{4.47} \end{cases} \begin{cases} \sin \theta = 0.447 \\ \cos \theta = 0.894 \end{cases}$ $\sum_{A} F/x = 0 \Rightarrow H_A + N_{AC} \cos \alpha + N_{AD} \cos \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AC} \cos \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \sin \alpha + N_{AC} \cos \alpha + N_{AD} \sin \beta = 0$ $\sum_{A} F/y = 0 \Rightarrow V_A + N_{AC} \cos \alpha + N_{AD} \cos \alpha +$							
		-0.447 انجد: شد $N_{AD} = -45 \Rightarrow N_{AD} = 100.67$ نظر $N_{AC} = -176.80$ انضغاط $N_{AC} = -176.80$							


$$\sum_{n} F/x = 0 \Rightarrow F_1 + N_{DC}\cos\alpha + N_{DE}\cos\theta - N_{DA}\cos\beta = 0$$

$$\sum F/y = 0 \Rightarrow -N_{DC}\sin\alpha + N_{DE}\sin\theta - N_{DA}\sin\beta = 0$$

$$\begin{cases} 0.707N_{DC} + 0.894N_{DE} = 29.99....(1) \end{cases}$$

$$(-0.707N_{DC} + 0.447N_{DE} = 89.99 \dots (2)$$


$$1.341N_{DE} = 119.98C \Rightarrow N_{DE} = 89.47KN$$
 بجمع (1) و (2) نجد: $N_{DC} = -70.71KN$ التعويض في إحدى المعادلتين *نجد*: انضغاط

$$\begin{split} & \sum F/x = 0 \Rightarrow -N_{EC} cos\alpha - N_{ED} cos\theta + N_{EB} cos\alpha = 0 \\ & \sum F/y = 0 \Rightarrow -F_2 - N_{EC} sin\alpha - N_{ED} sin\theta - N_{EB} sin\alpha = 0 \\ & \left\{ -0.707 N_{EC} + 0.707 N_{EB} = 79.98 \ldots . . (1) \\ & \left\{ -0.707 N_{EC} - 0.707 N_{EB} = 59.99 \ldots . . . (2) \right\} \end{split}$$

$$-1.414N_{EC} = 139.97 \Rightarrow N_{EC} = -98.98KN$$
 بجمع (1) و (2) نجد:

$$N_{EB} = 14.12 \text{KN}$$
 بالتعويض في إحدى المعادلتين نجد: شد

• عزل العقدة B

 $\sum F/x = 0 \Rightarrow -H_{\rm B} - N_{\rm BC} - N_{\rm BE} {\rm cos} \alpha = 0 \Rightarrow N_{\rm BC} = -104.98 {\rm KN}$ انضغاط $\sum F/y = 0 \Rightarrow -F_3 + N_{BE} \sin \alpha = 0 \Rightarrow N_{BE} = 14.14 \text{KN}$ شد

• تدوین النتائج فی جدول:

BC	EB	EC	DE	DC	AC	AD	العناصر
104.98	14.12	98.99	89.47	70.71	176.80	100.67	الشدة(KN)
انضىغاط	شد	انضىغاط	شد	انضىغاط	انضىغاط	شد	طبيعة الجهد

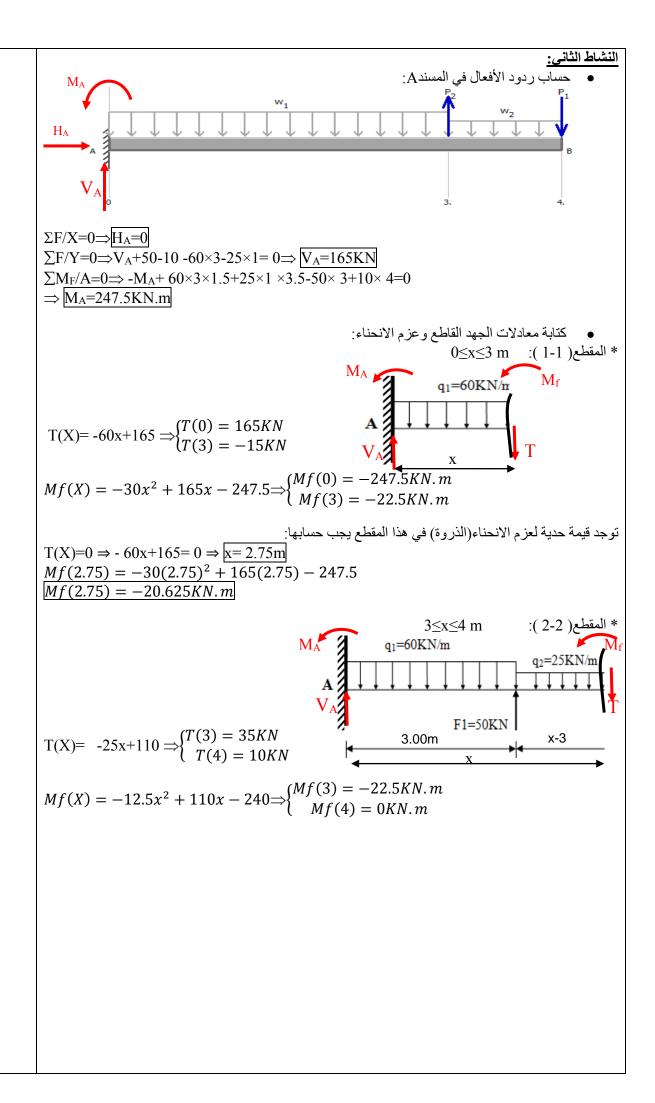
ي. حساب مساحة المقطع و استنتاج المجنب المناسب:
$$\sigma \leq \sigma \Rightarrow \frac{N_{AC}}{2S} \leq \sigma$$

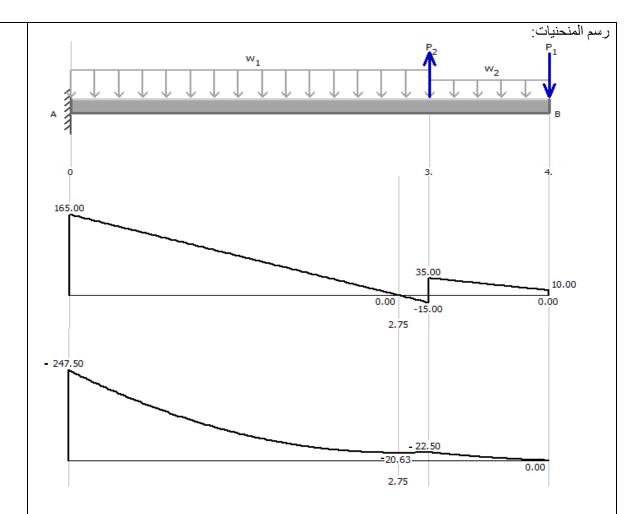
$$S \geq \frac{N_{AC}}{2\sigma} \Rightarrow S \geq \frac{176.78 \times 10^2}{2 \times 1600}$$

$$\Rightarrow S \geq 5.52 cm^2$$

 $L(50 \times 50 \times 6)$ أي المجنب $S=5.86 cm^2$ نختار من الجدول

$$au \leq au \Rightarrow rac{N_{
m AD}}{2{
m A}} \leq au$$
 حساب مقطع البرغي.


$$au \leq au \Rightarrow rac{N_{AD}}{2A} \leq au$$
 حساب مقطع البرغي: $au \leq au \Rightarrow rac{N_{AD}}{2A} \leq au$ حساب مقطع البرغي. $au \leq au \Rightarrow au \leq au$


$$A = \frac{\pi D^2}{4}$$
استنتاج القطر الأمن للبرغي:

:لدينا
$$A \geq 5.03$$
cm

$$\frac{\pi D^2}{4} \ge 5.03 \text{cm}^2 \Rightarrow D \ge \sqrt{\frac{4 \times 5.03}{3.14}}$$

$$D = 3 \text{cm} \text{ ideal } D \ge 2.53 \text{cm}$$

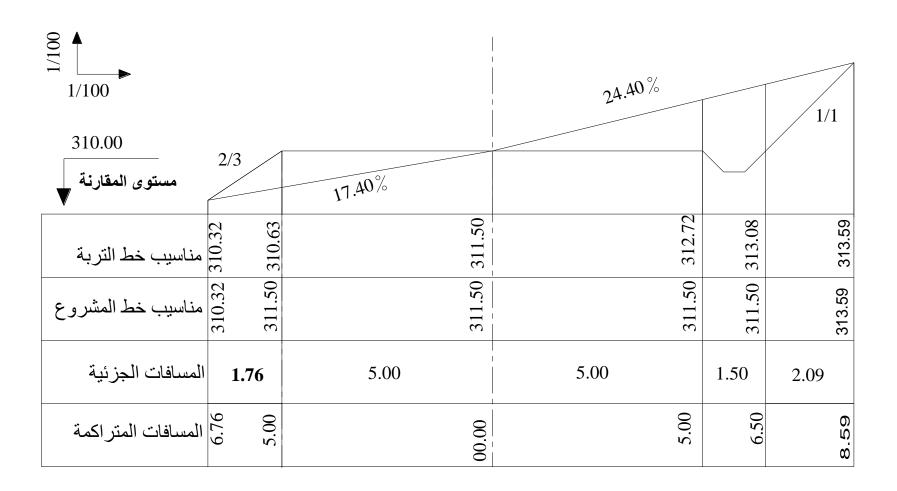
استنتاج Tmaxو Mfmax:

 $M_{fmax} = 247.5 \text{KN.m}$ $T_{max} = 165 \text{KN}$

4. حساب ارتفاع الرافدة h:

$$\sigma_{\max} \leq \sigma_a$$
 $\frac{M_{fmax}}{W_{XX}'} \leq \sigma_a$ $W_{XX} = \frac{bh^2}{6}$ مقطع الرافدة مستطيل $\frac{M_{fmax}}{bh^2} \leq \sigma_a \Rightarrow h \geq \sqrt{\frac{6M_{fmax}}{b\sigma_a}}$ $\Rightarrow h \geq \sqrt{\frac{6 \times 247.5 \times 10^4}{30 \times 250 \times 10^4}}$

 $\Rightarrow h \ge 44.49cm$

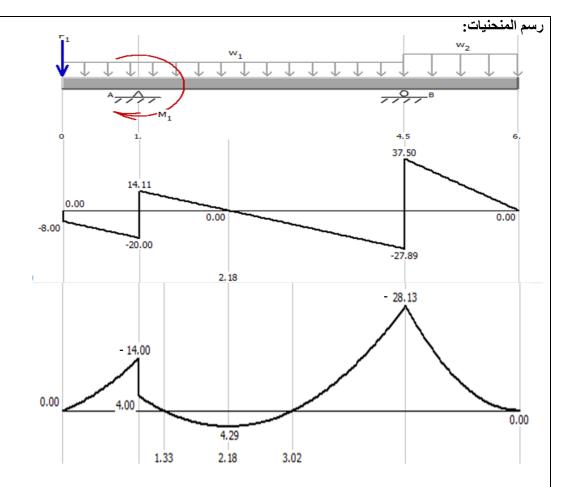

نأخذ: h=45cm

ىناء:

. النشاط الأول: المظهر العرضي

1/ تعريف المظهر العرضى النموذجي:

هو وثيقة خطية يتم إعدادها في مكتب الدراسات، لمشاريع الطرق الجديدة أو تهيئة وترميم طرق موجودة مسبقا. يمثل مقطعا عرضيا لجسم القارعة، حيث يظهر جزآن على هذا المقطع، نصف مقطع في حالة حفر والنصف الثاني في حالة ردم. كما يحتوي على جميع البيانات الخاصة بعناصر الطريق المستقبلي.


النشاط الثاني:

- تعريف المدارج المستقيمة: هي نوع من أنواع المدارج ذات مستويات أفقية متتالية ومختلفة المناسيب تسمح بالانتقال من طابق إلى آخر، حيث يكون فيها خط السير مستقيم.
 - انواعها: ذات قلبة واحدة ذات قلبتين متوازيتين ذات قلبتين متعامدتين، ذات ثلاث قلبات
 - 3. العناصر المرقمة:

$$n = \frac{H}{h} = \frac{306}{17} \Rightarrow \boxed{n=18}$$

$$2h+g=64cm \Rightarrow g=64-2(17)=30cm$$

العلامة		
العلامه مجزأة المجموع		عناصر الإجابة
اسجموع	مجره	الموضوع الثاني
		ميكانيك:
		النشاط الأول:
		F=8KN $M=10KN$ $Q1=12KN$ $Q2=25KN$
		+ + + + / + + + + + + + + + + + + + + +
		AH. 7 1.00 3.50 B 1.50
		$ m V_{A}$
		 حساب ردود الأفعال في المسندA:
		$\Sigma F/X=0 \Rightarrow H_A=0$
		$\sum F/Y = 0 \Rightarrow V_A + V_B - 12 \times 4.5 - 25 \times 1.5 - F = 0$
		$\Rightarrow V_A + V_B = 99.5 \text{KN} $ (1) $\sum M_F / A = 0 \Rightarrow -V_B \times 3.5 + M + q_1 \times 4.5 \times 1.25 + q_2 \times 1.5 \times 4.25 - F \times 1 = 0$
		$\Rightarrow V_B = 228.875/3.5 = 65.39KN \Rightarrow V_B = 65.39KN$
		$\sum M_F/B=0 \Rightarrow V_A \times 3.5 + M - q_1 \times 4.5 \times 2.25 + q_2 \times 1.5 \times 0.75 - F \times 4.5 = 0$
		$V_A = 119.375/3.5 = 34.11KN \Rightarrow V_A = 34.11KN$
		ــ التحقق :من المعادلة (1)نجد:
		$V_A+V_B=99.5KN$ محققة محققة $V_A+V_B=99.5KN$ محققة
		 كتابة معادلات الجهد القاطع و عزم الانحناء:
		* المقطع (1-1):
		$T(X) = -12x - 8 \Rightarrow \begin{cases} T(0) = -8KN \\ T(1) = -20KN \end{cases}$ $Mf(X) = -6x^2 + 8x \Rightarrow \begin{cases} Mf(0) = 0KN. m \\ Mf(1) = -14KN. m \end{cases}$
		$Mf(X) = -6x^2 + 8x \Rightarrow \begin{cases} Mf(0) = 0KN.m \\ Mf(0) = 0KN.m \end{cases}$
		(Mf(1) = -14KN.m)
		← →'
		* المقطع(2-2): 1≤x≤4.5 m *
		T(X) = 12.11 (T(1) = 14.11KN) F=8KN M=10KN M _f
		$T(X) = -12x + 26.11 \Rightarrow \begin{cases} T(1) = 14.11KN \\ T(4.5) = -27.89KN \end{cases}$
		$Mf(X) = -6x^2 + 26.11x - 24.11$
		$\Rightarrow \begin{cases} Mf(1) = -4KN.m \\ Mf(4.5) = -28.13KN.m \end{cases}$
		7.7
		→ X → ✓ A X → ✓ X توجد قيمة حدية لعزم الانحداء(الذروة) في هذا المقطع يجب حسابها:
		$T(X)=0 \Rightarrow -12x+26.11=0 \Rightarrow x=2.17m$
		$Mf(2.17) = -6(2.17)^2 + 26.11(2.17) - 24.11$
		Mf(2.17) = 4.29KN.m
		* المقطع (3-3): 4.5≤x≤6 m
		T(X) = -25x + 150
		$\Rightarrow \begin{cases} T(4.5) = 37.5KN \\ T(6) = 0KN \end{cases}$ F=8KN $\downarrow M=10KN \qquad \downarrow 0 = 12KN$
		11A A 7
		$Mf(X) = -12.5x^2 + 150x - 45$
		$\Rightarrow \begin{cases} Mf(4.5) = -28.13KN.m \\ Mf(0) = 0KN.m \end{cases}$
		$M_{I}(0) = 0$ M I V. III
<u> </u>	<u> </u>	

استنتاج T_{max}و M_{fmax}

 $M_{fmax} = 28.13 \text{KN.m}$ $T_{max}=37.5KN$

5. حساب معامل المقاومة للانحناء:

$$\sigma_{\max} \leq \overline{\sigma} \Rightarrow rac{M_{
m fmax}}{W_{XX\prime}} \leq \overline{\sigma}$$
 $W_{XX\prime} \geq rac{M_{
m fmax}}{\overline{\sigma}} \Rightarrow W_{XX\prime} \geq rac{28.13 \times 10^4}{1600} \Rightarrow W_{XX\prime} \geq 175.81 cm^3$ $W_{XX\prime} = 194 cm^3$:IPE200 المجنب المناسب من الجدول:

 $N_{ser} = G + Q = 120 + 72 = 192 \text{ KN}$

$$f_{su} = \frac{f_e}{g_s} = \frac{500}{1.15} = 434.78MPA$$

$$A_u = \frac{N_u}{f_{su}} = \frac{270.10^3}{434.78' \ 10^2}$$

$$A_u = 6.21cm^2$$

$$f_{28} = 0.6 + 0.06 \times 25 = 2.1 MPa$$

$$\overline{\sigma}_s$$
 حساب حد إجهاد الشد في الخرسانة _2

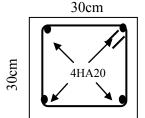
$$.\overline{\sigma_{S}} = \min_{\tilde{t}} \frac{\ddot{t}}{2} fe; 90 \sqrt{n \times f_{tj}}^{\tilde{t}}$$
 التشققات ضارة جدا:

$$\overline{\sigma}_{\mathbf{s}} = \frac{1}{2}500 = 250MPa$$

$$\overline{\sigma}_{\mathbf{s}} = 90\sqrt{1.6^{*}2.1} = 164.97MPa$$
 $\overline{\sigma}_{\mathbf{s}} = 164.97MPa$: ناخذ 3
 $N_{ser} = 192 \times 10^{3}$

$$A_{ser} = \frac{N_{ser}}{\overline{\sigma}_{s}} = \frac{192 \times 10^{3}}{164.67 \times 10^{2}}$$

$$A_{ser} = 11.63cm^2$$


ج المقطع النظري المحتفظ به $A_{st} = \max \left\{ A_u, A_{ser} \right\}$

 $A_{st} = 11.63cm^2$

د المقطع الحقيقي المحتفظ به من الجدول نأخذ: 4HA20 أي $A_s = 12.56 \text{ cm}^2$

التحقق من شرط عدم الهشاشة A_{s} . $f_{e} \geq B$. f_{t28}

 $12.56 \times 500 \ge 30^2 \times 2.1$ 6280≥1890 محققة

$$\Delta L = \frac{N_U \times l}{E^{\times} A_s}$$

$$\Delta L = \frac{270 \times 10^3 \times 5 \times 10^3}{2 \times 10^5 \times 12.56 \times 10^2} = 5.37 mm$$

النشاط الأول: حساب مساحة القطعة ABCD باستعمال طريقة الإحداثيات القائمة:

حساب الإحداثيات القائمة للنقطتين D و C:

$$x_{C} = x_{o} + l_{OC} \sin G_{OC} = 0 + 82.08 \sin(100 - 52.194)$$

$$x_{C} = 56.00m$$

$$y_{C} = y_{o} + l_{OC} \cos G_{OC} = 0 + 82.08 \cos(100 - 52.194)$$

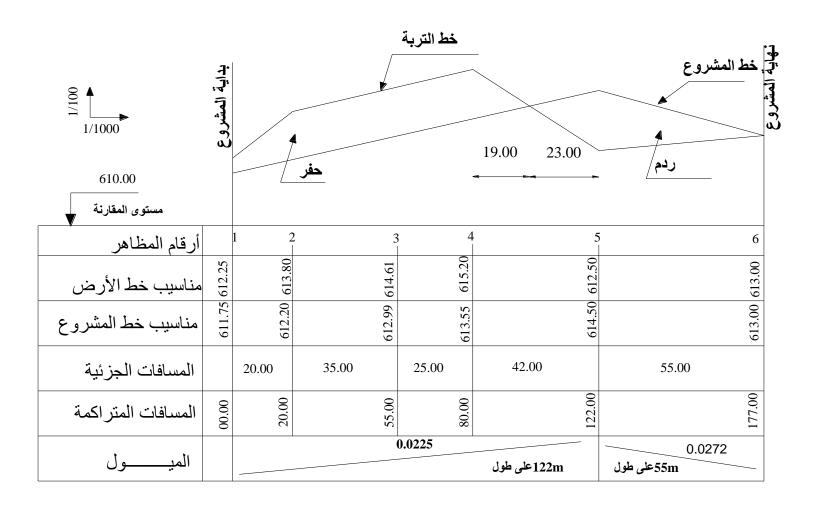
$$Y_{C} = 60.00m$$

$$x_{D} = x_{o} + l_{OD} \sin G_{OD} = 0 + 57.49 \sin(100 - 14.521)$$

$$x_{D} = 56.00m$$

$$y_{D} = y_{o} + l_{OD} \cos G_{OD} = 0 + 57.49 \cos(100 - 14.521)$$

$$y_{D} = 13.00m$$


حساب مساحة القطعة ABCD:

$$S = \frac{1}{2} [X_A (Y_D - Y_B) + X_B (Y_A - Y_C) + X_C (Y_B - Y_D) + X_D (Y_C - Y_A)]$$

$$S = \frac{1}{2} [0(13 - 68) + 20(33 - 60) + 56(68 - 13) + 56(60 - 33)]$$

$$S = \frac{1}{2} [0 - 540 + 3080 + 1412]$$

$$S = \frac{1}{2} [0 - 540 + 3080 + 1412]$$

