التمرين الأول:

للماء الاكسيجيني H_2O_2 أهمية بالغة ، فهو معالج للمياه المستعملة ومطهّر للجروح ومعقم في الصناعات الغذائية . الماء الاكسجيني يتفكك بتحول بطيء جدا في الشروط العادية معطيا غاز ثنائي الاكسجين والماء وفقا للمعادلة المنمذجة للتحول الكيميائي:

$$.2H_2O_{2(aq)} = 2H_2O_{(l)} + O_{2(g)}$$

قارورة بها V=500ml من الماء الاكسجيني تركيزها C_0 حسب الملصقة الموجودة على غلافها فإن تفكك الماء الاكسجيني كليا يعطينا V=10l من غاز الاكسجين $V_g=10l$ الشرطين النظاميين.

- 1- عرف كلا من تفاعل الاكسدة وتفاعل الارجاع.
- الداخلتين في -2 بين ان تفاعل التفكك الذاتي للماء الاكسجيني هو تفاعل اكسدة ارجاع معطيا الثنائيتين (Ox/Red) الداخلتين في التفاعل.
 - 3- انجز جدو لا لتقدم التفاعل الحاصل.
 - 4- بالاستعانة بجدول التقدم بين أن التركيز المولي للماء الاكسجيني في القارورة يعطى بالعلاقة:

ثم احسب قیمته. $C_0 = \frac{2V_g}{V \times V_M}$

 $V_0=10ml$ من صحة التركيز المحسوب سابقا نأخذ بواسطة ماصة حجما $V_0=10ml$ من قارورة الماء الاكسجيني H_2O_2 نفرغها في بيشر ونضيف اليه قطرات من حمض الكبريت المركز ثم نعاير المزيج بمحلول مائي لثاني كرومات البوتاسيوم $V_0=10ml$ ذو اللون البرتقالي. تركيزه المولي $V_0=10ml$ نصل الى التكافؤ عند اضافة حجم $V_0=10ml$. $V_0=10ml$

أ- ارسم مخطط للتركيب المستعمل للمعايرة.

ب-عرف نقطة التكافؤ وكيف نستدل عليها؟

 $(Cr_2O_7^{2-}/Cr^{3+})$ ، (O_2/H_2O_2) : ج- اكتب معادلة تفاعل المعايرة علما ان

. V_E و C ، V_0 ، C'_0 و C ، استنتج العلاقة بين

ه- بحساب C'_0 تأكد ان الماء الاكسجيني في القارورة تفكك جزئيا.

d=1.4 وكثافته P=3% وكثافته على شكل مطهر بدرجة نقاوة P=3% وكثافته P=3%

- ما هو حجم الماء الذي يجب اضافته للقارورة حتى نحصل على المطهر الذي يباع في الصيدليات؟

O = 16g/mol H = 1g/mol

 $V_M = 22.4L/mol$

التمرين الثائي:

لإزالة الطبقة الكلسية على جدران أدوات الطهي المنزلية يمكن استعمال منظف تجاري لمسحوك حمض السولفاميك القوي ذي الصيغة الكيميائية H_3NSO_3 ونقاوته (P%).

V=100mLلحصول على المحلول (S_A) لحمض السولفاميك ذي التركيز المولي ، C_A ، نحضر محلولا حجمه m=0.9g ويحتوي الكتلة m=0.9g من المسحوق التجاري لحمض السولفاميك.

لمعايرة المحلول (S_A) نأخذ منه حجما $V_A=20m$ ونعايره بواسطة هيدروكسيد الصوديوم Na^++HO^-) ذي التركيز المولي $C_b=0.1\,mol/L$ من محلول التركيز المولي $V_{bE}=15.3m$ من محلول هيدروكسيد الصوديوم. معادلة المعايرة هي:

 $. NH_3SO_3 + HO^- = NH_2SO_3^- + H_2O$

1- عرف كلا من الأساس والحمض.

2- بين أن التفاعل الحداث هو تفاعل حمض - أساس.

3- اذكر الخطوات التجريبية لعملية المعايرة.

 m_A المحلول (S_A) للمحلول (S_A) ثم استنتج الكتلة m_A لحمض السولفاميك المذابة في هذا المحلول. -5 احسب النقاوة (P%) للمنظف التجاري.

$M = 97g/mol: NH_3SO_3$ تعطى الكتلة المولية للحمض