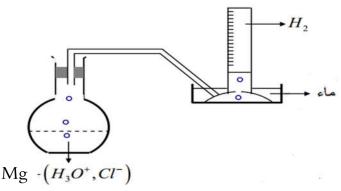
التمرين:

1-كتابة معادلة التفاعل الحادث:

 $Mg = Mg^{2+} + 2\acute{e}$: المعادلة النصفية للأكسدة

 $2H_3O^+ + 2\acute{e} = H_2 + 2H_2O$: المعادلة النصفية للأرجاع


 $Mg_{(s)} + 2H_3 O^+_{(aq)} = Mg^{2+}_{(aq)} + H_{2(g)} + 2H_2 O_{(l)}$: بالجمع طرف لطرف نجد :

2- طريقتين التي يمكن أن نتابع بها هذا التفاعل التام:

أ-طريقة قياس الناقلية لأنه محلول شاردي

 H_3O^+ بـ قياس pH لأنه يحتوي على شوارد pH

- رسم مخطط لهذه التجربة

أ-إنشاء جدول تقدم التفاعل

$Mg_{(s)}$ + $2H_3O^+_{(aq)}$ = $Mg^{2+}_{(aq)} + H_{2(g)} + 2H_2O_{(l)}$				
$n_0(Mg)$	0,02	0	0	بزيادة
$n_0(Mg)-x$	0,02-2x	х	х	بزيادة
$n_0(Mg)-x_m$	$0.02-2x_{m}$	x max	x max	بزيادة

x_{max} إستنتاج قيمة التقدم الأعظمي

$$x_{\max} = n \left(V_{H_2} \right)_f = \frac{\left(V_{H_2} \right)_f}{V_M} = \frac{0.12}{24} \Rightarrow \quad x_{\max} = 0.005 \ mol$$
 من البيان

ب- تحديد المتفاعل المحد

با أن التفاعل تام و Mg الخد $0,02-2(0,005)\neq 0$ هو المتفاعل المحد

m قيمة -

بما أن Mg هو المتفاعل المحد

$$\frac{m}{M} - x_m = 0 \Rightarrow m = Mx_m \Rightarrow m = 0,005 \times 24 \Rightarrow m = 0,12 g$$

$$V_{H_2}(t_{1/2}) = \frac{V(H_2)_f}{2} : نان أن : - ج$$

$$x = n(V_{H_2}) = \frac{V_{H_2}}{V_M} \Rightarrow V_{H_2} = xV_M \qquad , \qquad V(H_2)_f = x_{\text{max}}V_M$$

$$V(H_2)_{t_{1/2}} = \frac{x_{\text{max}}}{2}V_M \Rightarrow V_{H_2}(t_{1/2}) = \frac{V(H_2)_f}{2}$$

 $t_{1/2}$ التفاعل نصف التفاعل – تحديد

$$t_{1/2} = 54s$$
 : وبالإسقاط على محور الفواصل نجد $V_{H_2}(t_{1/2}) = \frac{V(H_2)_f}{2} = \frac{120}{2} = 60mL$

 $t=30\,s$ عند اللحظة المريب المولي للمزيج عند اللحظة

$$x = n(V_{H_2}) = \frac{V_{H_2}}{V_M} = \frac{40 \times 10^{-3}}{24} \Rightarrow x(30s) = 1,66 \times 10^{-3} mol$$

$n\left(Mg\right)_{t=30s}$	$n\left(H_3O^+\right)_{t=30s}$	$n\left(Mg^{2+}\right)_{t=30s}$	$n\left(H_2\right)_{t=22,5\mathrm{min}}$
$n_0(Mg)-x$	0,02-2x	x	x
$0,005-1,66\times10^{-3}$	$0,02-2(1,66\times10^{-3})$	$1,66 \times 10^{-3}$	$1,66 \times 10^{-3}$
$3,34 \times 10^{-3} mol$	$1,66 \times 10^{-2} mol$	$1,66 \times 10^{-3} mol$	$1,66 \times 10^{-3} mol$

 $V_{vol} = \frac{1}{V_{vol} \times V} \frac{dV_{H_2}}{dt}$: هـ المارية الحجمية للتفاعل تعطى بالعلاقة التالية المحجمية للتفاعل العلاقة المحجمية المحجمية للتفاعل العلاقة المحجمية المحجمية

$$V_{vol} = \frac{1}{V} \frac{dx}{dt}$$
 , $x = \frac{V_{H_2}}{V_M} \Rightarrow \frac{dx}{dt} = \frac{1}{V_M} \frac{dV_{H_2}}{dt} \Rightarrow V_{vol} = \frac{1}{V_M \times V} \frac{dV_{H_2}}{dt}$

-حساب قيمتها الأعظمية

$$V_{vol}\left(0
ight) = rac{1}{24 imes 0,02} \left(rac{0,12-0}{78-0}
ight) \Rightarrow V_{vol}\left(0
ight) = 3,2 imes 10^{-3} \left(rac{mol}{Ls}
ight) \quad t=0$$
 يعني عند اللحظة $t=0$