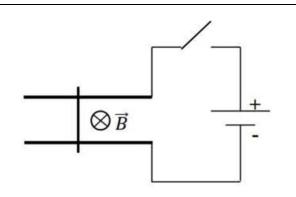
| السنة الدراسية: 2017-2018 | ثانوية حاجي عمار – الغروس |
|---------------------------|---------------------------|
| المادة:العلوم الفيزيائية  | المستوى: 2علوم تجريبية2.1 |

## الاختبار الثابي

## التمرين الأول: 05نقاط

اليك معادلات التفاعل الكيميائية التالية:


1) 
$$C_6H_5CO_2H + NH_2OH \longrightarrow C_6H_5CO_2^- + NH_3OH^+$$

2) 
$$C_6H_8O_6 + NH_3 \longrightarrow C_6H_7O_6 + NH_4 +$$

$$3)2S_2O_3^{2-} + I_2$$
  $\longrightarrow S_4O_6^{2-} + 2I^{-}$ 

4)
$$HF + ClO^- \longrightarrow F^- + HClO$$

- 1. حدد التفاعلات التي تمثل تفاعلات حمض-اساس ؟ لماذا ؟.
- 2. حدد الثنائيتين (حمض/اساس) المشاركتين في التفاعل في كل حالة.



## التمرين الثاني: 05نقاط

في تجربة السكتين الموضحة في الشكل المقابل ،نغلق

 $oldsymbol{AB}$  القاطعة ,  $oldsymbol{(K)}$  , فتلاحظ

1. على الرسم:

 $oldsymbol{AB}$ أ. عين جهة التيار الكهربائي المار في الناقل

ب. مثل القوة المؤثرة على منتصف الناقل والمسببة لحركة الناقل

 $U\!\!=\!\!9v$  وأن التوتر الذي يغذي الناقل هي  $R=10\,\Omega$  وأن التوتر الذي يغذي الناقل .2

 $m{AB}$ أ. بإستخدام قانون أوم أحسب شدة التيار الكهربائي المار في الناقل

 $oldsymbol{AB}$  أحسب شدة القوة الكهرومغناطيسية المؤثرة على الناقل أ

3. لو جعلنا منحى الحقل المغناطيسي يوازي الناقلAB . ماذا يحدث ؟علل؟

AB = 5cm B = 0.4T: يعطى

## التمرين الثالث:10نقاط

نقص البوتاسيوم هو فقر الجسم لهذا العنصر . لمعالجة هذا النقص و تعويضه نستعمل محلول كلور البوتاسيوم في الجسم عن طريق الحقن الوريدي . يباع محلول كلور البوتاسيوم في الصيدليات على صورة زجاجة سعتها  $3000\,\mathrm{Mpc}$  تحتوي على  $300\,\mathrm{mc}$  من كلور البوتاسيوم  $300\,\mathrm{mc}$  ومن أجل التأكد من هذه الكتلة  $300\,\mathrm{mc}$  لدينا محلول تجاري من كلور البوتاسيوم  $300\,\mathrm{mc}$  تركيزه المولي  $300\,\mathrm{mc}$ 

مرح ، V=50~mL ، محايرة الخلية نحضر انطلاقا من المحلول  $S_0$  خمسة محاليل حجمها G الموافقة قياس قيمة التوتر بين طرفي الخلية و شدة التيار المار في الدارة بحساب قيمة الناقلية G الموافقة لكل محلول كما هو مبين في الجدول المقابل :

| C(m moL/L ) | 1    | 2    | 4    | 6    | 8    |
|-------------|------|------|------|------|------|
| G(mS)       | 0,28 | 0,56 | 1,16 | 1,70 | 2,28 |

- 1. أرسم مخطط تركيب الدارة المستعملة في هذه التجربة .
  - . G = f(C) أرسم المنحنى البيانى 2
    - 3. ماذا يسمى هذا المنحني ؟.
- $m{C}$  . انطلاقا من المنحنى أوجد العلاقة بين الناقلية  $m{G}$  و التركيز المولى .  $m{4}$ 
  - . C استنتج العلاقة بين الناقلية النوعية  $\sigma$  للمحلول والتركيز المولي 5
- II. نقيس باستعمال نفس التركيب السابق و عند نفس درجة الحرارة ناقلية محلول الزجاجة ، فنحصل

$$G_1 = 293 mS$$
على

- المنحنى عيين مباشرة تركيز محلول كلور البوتاسيوم  $C_1$  للزجاجة المحقونة بواسطة المنحنى السابق ، برر إجابتك ؟.
  - 2. أقترح طريقة تمكنك من قياس هذا التركيز ؟.
  - $G_2 = 1,89$  سرة ، فكانت قيمة الناقلية 200 مرة ، فكانت قيمة الناقلية .3
  - أ. أستنتج قيمة التركيز  $C_2$  للمحلول الممدد ثم التركيز  $C_1$  لمحلول الزجاجة ؟.
    - $oldsymbol{\psi}$ . أحسب الكتلة  $oldsymbol{m}_1$  ، و قارنها بالكتلة المعطاة  $oldsymbol{\psi}$

$$M_{K}$$
 =  $39g/moL$  ،  $M_{Cl}$ =  $35.5g/moL$  : المعطيات

بالتوفيق