الجزء الأول : (13 نقطة) الجزء الأول المدة : 3ساعات

التمرين الأول: (7نقاط)

 $m_{_0}=2\,g$ اللحظة t=0 تحتوي عينة مشعة من $Po_{_{84}}$ كتلتها t=0

t أ-بيّن أن $m(t)=m_0\,e^{-\lambda t}$ إنطلاقا من العلاقة التالية : $N(t)=N_0\,e^{-\lambda t}$ عند لحظة المتبقية عند العلاقة التالية أ

ب-بيّن أن : $m_d=m_0-m_0\,e^{-\lambda t}$ حيث $m_d=m_0-m_0\,e^{-\lambda t}$

 $\lambda = m(t) \; , \; rac{dm_d}{dt} \;$ وجد العلاقة التي تربط

 $\frac{dm_d}{dt}$ = $f\left(m(t)
ight)$ التالي: من رسم المنحنى التالي: عكنا من رسم المنحنى التالي: -2

بالاعتماد على العلاقة البيانية و العلاقة النظرية في السؤال $\,1-$ ج.

أ-أوجد قيمة ثابت الزمن λ .

 $t_{1/2} = rac{Ln\,2}{\lambda}\,:\,$ ب $t_{1/2} = rac{Ln\,2}{\lambda}$ و حدد قيمته.

 A_0 جـأحسب عدد الأنوية الإبتدائية م N_0 ثم إستنتج

 $rac{m_d}{m(t)} = e^{\lambda t} - 1$: السؤال -1 السؤال السؤال السؤال السؤال

 $\frac{m_d}{m(t)} = 3$ هـ-إستنتج المدة الزمنية لبلوغ النسبة

 $t=2t_{1/2}$ بيّن أن $m(t)=rac{m_0}{2^{rac{t}{t_{1/2}}}}$ عند اللحظة $m(t)=rac{m_0}{2^{rac{t}{t_{1/2}}}}$ عند اللحظة عند اللحظة -3

 $M\left(\frac{210}{84}Po\right) = 210 \ g \ / \ mol \qquad N_A = 6,$

 $\left(\frac{d m_d}{dt} \times 10^{-7} \left(\frac{g}{s}\right)\right)$

0, 2

0,5

 $N_{_A} = 6,023{ imes}10^{23} mol^{-1}$: يُعطى

m(t) (g)

التمرين الثاني : (6نقاط)

 $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{99}_{39}Y + ^{135}_{53}I + 2^{1}_{0}n$: التالي التالي يتم قذف نواة اليورانيوم يترون فيحدث تفاعل إنشطار نووي التالي يتم قذف نواة اليورانيوم النووي ألبيرون فيحدث تفاعل إنشطار النووي ألبيرون فيحدث تفاعل إنشطار النووي

 E_{iib}^{235} ب أحسب ب(MeV) ثم بالجول (J) الطاقة المحررة E_{lib} عن إنشطار نواة واحدة من اليورانيوم

بوحدة الجول (J) عن إنشطار g من اليورانيوم E_{libT} جرأحسب الطاقة المحررة E_{libT}

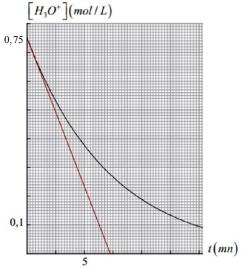
(المردود) $r = \frac{E_{electrique}}{E_{bhT}}$: ثير 40% عبر المفاعل النووي بمردود E_{bhT} : ثير المواقة النووية إلى طاقة كهربائية داخل المفاعل النووي بمردود

 $_{92}^{235}U$ من اليورانيوم $_{1g}$ من اليورانيوم المفاعل النووي عن إنشطار $_{1g}$ من اليورانيوم أ–أحسب قيمة الطاقة الكهربائية التي ينتجها المفاعل النووي عن إنشطار

ب-مثّل الحصيلة الطاقوية لهذا التفاعل.

 E_{libT} علما أن إحتراق 1Kg من البترول يُحرر طاقة قدرها 42MJ, أحسب عدد براميل البترول اللازمة لإنتاج نفس الطاقة 1Kg

يُعطى : (كتلة البرميل الواحد هي 160 Kg , ماذا تستنتج؟


 $m\left(I\right)=134,88118u$ $m\left(\begin{smallmatrix} 1\\ 0 \end{smallmatrix}\right)=1,008866u$, $m\left(Y\right)=98,90334u$, $m\left(\begin{smallmatrix} 235\\ 92 \end{smallmatrix}\right)=234,99427u$: يعطى

 $1MJ = 10^6 J$, $N_A = 6.023 \times 10^{23} mol^{-1}$, $1MeV = 1.6 \times 10^{-13} J$

الجزء الثـــاني :

التمرين التجريبي: (7نقاط)

إن تفاعل مسحوق الألمنيوم (Al) مع محلول حمض كلور الهيدروجين (H_3O^+,Cl^-) هو تفاعل تام وبطئ. نشكّل مزيجين متفاعلين من مسحوق الألمنيوم و حمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-) عمض كلور الهيدروجين التفاعل الذي يحدث في كل مزيج هو (H_3O^+,Cl^-)

المزيج الأول :

يتشكّل من $V=200\,ml$ من مسحوق الألمنيوم وحجم $V=200\,ml$ من حمض كلور الهيدروجين تركيزه المولى t=0 , نتابع هذا التحول إبتداءا من اللحظة t=0 وذلك

 $[H_3O^+] = f(t)$ التركيز المولي لشوارد $[H_3O^+] = H_3O^+$ في المزيج من حين لآخر.

1-أنشئ جدول التقدم, وبيّن أن المزيج في شروط ستوكيومترية

$$t_{_{1/2}}$$
 بين أن عند $t=t_{_{1/2}}$ يكون $t=0$ يكون $t=t_{_{1/2}}$ بين أن عند ي

$$V_{vol} = -rac{1}{6}rac{d\left[H_3O^+
ight]}{dt}$$
: السرعة الحجمية للتفاعل تُكتب بالشكل السرعة الحجمية للتفاعل المتحالية المتح

t=0 أحسب قيمتها عند اللحظة

المزيج الثاني :

يتشكّل من $1,35\,g$ من مسحوق الألمنيوم وحجم $V=200\,m$ من ممض كلور الهيدروجين تركيزه المولي 'C , نتابع هذا التحول إبتداءا من اللحظة t=0 , وذلك بجمع غاز الهيدروجين في مقياس غاز كما هو موضّح في الشكل .

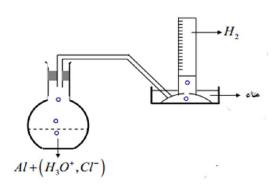
تحصّلنا على النتائج المدوّنة في الجدول, وذلك بعد إرجاع الغاز للشروط النظامية

 $x \approx 1,49 \times 10^{-2} \times V_{H_2}$: أنشئ جدول التقدم ثم بيّن أن الم

2- أكمل الجدول

t(mn)	0	5	10	15	20	25	30	40	50	70	80	90
$V_{H_2}(L)$	0	0,211	0,360	0,465	0,540	0,593	0,630	0,675	0,700	0,714	0,720	0,720
x (mol)												

x = f(t) مثّل بیانیا المنحنی -3


C' أحسب قيمة التقدم الأعظمى من $x_{
m max}$ ثم أحسب قيمة الم

t=0 عند اللحظة الحجمية للتفاعل عند اللحظة ا-5

6- قارن هذه القيمة مع السرعة المحسوبة في المزيج الأول

-ثم أذكر سبب إختلاف النتيجيتين

$$V_{M} = 22,4 L / mol$$
 , $M(Al) = 27 g / mol$: يُعطى

